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Abstract

In [4], we have already studied the space of p-summable sequences i.e. (lp)

as an n-normed space by defining a new n-norm on it. In [5], we have resulted

that equivalent norms can be derived by non-equivalent n-norms. Inspired by the

problem raised in Gunawan and others paper [7], in this paper, we shall show

that sequentially equivalent n-norms need not be equivalent.
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1. Introduction

Gähler [8], initialy introduced the theory of 2-norm on a linear space while

that of n-norm can be found in [10] and has been studied in many papers such

as [1, 9, 3]. Research works on sequence spaces regarded as n-normed space can

be found in [1, 2, 4, 5, 6].

Definition 1.1. Let X be a vector space over K(= R or C) of dimension d ≥
n(n ≥ 2). A non-negative real valued function ∥., . . . , .∥ defined on Xn satisfying

the four conditions:

(N1) ∥x1, x2, · · · , xn∥ = 0 if and only if x1, x2, · · · , xn are linearly dependent;

(N2) ∥x1, x2, · · · , xn∥ is invariant under the permutation of x1, x2, · · · , xn;
(N3) ∥α · x1, x2, · · · , xn∥ = |α| · ∥x1, x2, · · · , xn∥;
(N4) ∥x1 + y, x2, · · · , xn∥ ≤ ∥x1, x2, · · · , xn∥+ ∥y, x2, · · · , xn∥;

for all x1, x2, · · · , xn, y ∈ X and for all α ∈ K, is called an n-norm on X, and

the pair (X, ∥., . . . , .∥) is called an n-normed space.

Definition 1.2. A sequence
(
xl
)∞
l=0

defined in n-normed space (X, ∥., . . . , .∥) is
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said to be convergent at x ∈ X if

∥xl − x, z1, · · · , zn−1∥ → 0 as l → ∞

for every z1, · · · , zn−1 ∈ X.

Definition 1.3. Two n-norms ∥·, · · · , ·∥1 and ∥·, · · · , ·∥2 defined on a linear space

X are said to be equivalent or equivalent of type 1 ( in short E1) if ∃K1,K2 >

0 such that:

K1 · ∥x1, x2, · · · , xn∥1 ≤ ∥x1, x2, · · · , xn∥2 ≤ K2 · ∥x1, x2, · · · , xn∥1

for all x1, x2, · · · , xn ∈ X. n-norms which are not equivalent are termed as non-

equivalent.

Definition 1.4. Two n-norms ∥·, · · · , ·∥1 and ∥·, · · · , ·∥2 defined on a linear space

X are said to be sequentially equivalent or Sequentially equivalent of type

1 (in short SE1) if convergence of a sequence in ∥·, · · · , ·∥1 implies convergence

in ∥·, · · · , ·∥2 and vice versa.

Definition 1.5. Let (X, ∥·, · · · , ·∥) be an n-normed space and {e1, · · · , en} is a

set of linearly independent vectors in X then both of the functions ∥ · ∥d∞ and

∥ · ∥dq define a norm on X (known as derived norm with respect to the set

{e1, · · · , en}) and they are equivalent, where

(1) ∥x∥d∞ = max
{
∥x, et1 , . . . , etn−1∥ : {t1, . . . , tn−1} ⊂ {1, . . . , n}

}
(2) ∥x∥dq =

(∑
{t1,...,tn−1}⊂{1,...,n} ∥x, et1 , . . . , etn−1∥q

)1/q
; 1 ≤ q < ∞.

It is obvious that if a sequence is convergent in an n-normed space then it

is convergent in its derived normed space also.

In this paper, we shall study the sequence space lp where

lp =

{
x = (xi)

∞
i=0 :

∞∑
i=0

|xi|p < ∞ where xi ∈ K, for all i = 0, 1, 2, . . .

}
.

As we know that (lp, ∥ · ∥p) is a Banach space where ∥x∥p = (
∑∞

i=0 |xi|p)
1/p while

(lp, ∥ · ∥∞) forms simply a normed space where ∥x∥∞ = sup0≤i<∞ |xi|.

In [4], for our convenience and need we have denoted the set of whole numbers

as N = {0, 1, 2, . . .} , which is also considered as a sequence N = (0, 1, 2, . . .). Fur-

ther, we have denoted the sequence N = (0, 1, 2, . . .) in the form of n-consecutive

terms notation as

N = (0, 1, 2, . . .) = (nl, nl + 1, . . . , nl + (n− 1))∞l=0
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and expressed as

N = (n · 0 = 0, n · 0 + 1 = 1, . . . , n · 0 + (n− 1) = n− 1,

n · 1 = n, n · 1 + 1 = n+ 1, . . . , n · 1 + (n− 1) = 2n− 1, . . .)

Let N =
(
mnk,mnk+1, . . . ,mnk+(n−1)

)∞
k=0

be a rearrangement of the se-

quence N. Then for any n vectors

xt =
(
xtnl, x

t
nl+1, . . . , x

t
nl+(n−1)

)∞

l=0
∈ lp ; t = 1, 2, . . . , n

the n vectors

x
t
=

(
xt
mnk

, xt
mnk+1

, · · · , xt
mnk+(n−1)

)∞

k=0
; t = 1, 2, . . . , n

are called parallel rearrangements of x1, x2, · · · , xn respectively.

In [4], we have observed that
(
lp, ∥·, · · · , ·∥p

)
is an n-normed space where

∥x1, x2, · · · , xn∥p = sup{|x1, x2, . . . , xn| : x1, x2, . . . , xn are parallel

rearrangements of x1, x2, · · · , xn respectively} (1)

and

∣∣∣x1, x2, . . . , xn∣∣∣ =


∞∑
k=0

∣∣∣∣∣∣∣∣∣∣
det


x1
mnk

x1
mnk+1

· · · x1
mnk+(n−1)

x2
mnk

x2
mnk+1

· · · x2
mnk+(n−1)

· · · · · · · · · · · ·
xn
mnk

xn
mnk+1

· · · xn
mnk+(n−1)


∣∣∣∣∣∣∣∣∣∣

p
1/p

. (2)

Moreover using Minkowski’s inequality, we have∣∣∣x1, x2, . . . , xn∣∣∣ ≤ n!∥xπ1∥p · ∥xπ2∥∞ · · · ∥xπn∥∞;

hence

∥x1, x2, · · · , xn∥p ≤ n!∥xπ1∥p · ∥xπ2∥∞ · · · ∥xπn∥∞; (3)

where {π1, π2 . . . , πn} is any permutation of {1, 2, . . . , n}.

In [1], Malčeski investigated that the function

∥x1, x2, · · · , xn∥∞ := sup
i1,...,in

∣∣∣∣∣∣∣∣det

x1i1 x1i2 . . . x1in
x2i1 x2i2 . . . x2in
. . . . . . . . . . . .

xni1 xni2 . . . x1in


∣∣∣∣∣∣∣∣ (4)

defines an n-norm on l∞ , where i1, . . . , in ∈ N and

∥x1, x2, · · · , xn∥∞ ≤ n! · ∥x1∥∞ · ∥x2∥∞ · · · ∥xn∥∞.
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But lp is a subspace of l∞ therefore we can show that ∥. . . . , .∥∞ forms an n-norm

on lp also.

2. Results

Obviously equivalent n-norms give equivalent derived norms with respect

to same linearly independent set. In [4, 5], we have already proved that the

two n-norms ∥., . . . , .∥p and ∥. . . . , .∥∞ defined on lp are non-equivalent. While

their derived norms with respect to the linearly independent set
{
e1, · · · , en

}
are

equivalent and equivalent to ∥.∥∞, where et = (δti)
∞
i=0. For details see [5]. Here

we shall prove that these two n-norms give equivalent derived norms with respect

to many linearly independent sets.

In [7], it has been proved that equivalent n-norms become sequentially equiv-

alent. Here, our aim is to prove that sequentially equivalent n-norms need not be

equivalent.

Here we shall use the results of [4, 5] as following lemmas.

Lemma 2.1. For every x1, x2, · · · , xn ∈ lp, we have

∥x1, x2, · · · , xn∥∞ ≤ ∥x1, x2, · · · , xn∥p. (5)

Next, for every K > 0 there exists a positive integer N such that N1/p > K.

Defining xt =
(
xti
)∞
i=0

∈ lp ; t = 1, 2, . . . , n as follows:

xti =

{
1 ; if i ≡ (t− 1)(modn) and 0 ≤ i ≤ (Nn− 1)

0 ; otherwise

then we get

∥x1, x2, · · · , xn∥p = N1/p > K

while

∥x1, x2, · · · , xn∥∞ = 1.

hence we have the following lemma.

Lemma 2.2. The two n-norms ∥·, · · · , ·∥∞ and ∥·, · · · , ·∥p are non-equivalent.

Theorem 2.3. Let z1, z2, · · · , zn ∈ lp are linearly independent such that the

number of non-zero terms of each sequence zt ≤ λ for all t = 1, 2, · · · , n then for

all x ∈ lp, we have

∥x∥d∞ ≤ ∥x∥
d

p ≤ λ · ∥x∥d∞
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where ∥x∥d∞ = max
{
∥x, zt1 , . . . , ztn−1∥∞ : {t1, . . . , tn−1} ⊂ {1, . . . , n}

}
and ∥x∥

d

p =

max
{
∥x, zt1 , . . . , ztn−1∥p : {t1, . . . , tn−1} ⊂ {1, . . . , n}

}
.

Proof. From lemma 2.1 it is clear that for all x ∈ lp, we have

∥x∥d∞ ≤ ∥x∥
d

p.

Again since the number of non-zero terms of each sequence zt ≤ λ therefore for

every rearrangement N =
(
mnk,mnk+1, . . . ,mnk+(n−1)

)∞
k=0

of the sequence N at

most λ terms of the series (2) may be non-zero. therefore in view of (2) and (4),

we have

∥x∥
d

p ≤ λ · ∥x∥d∞.

Hence, we have the theorem.

Corollary 2.4. In general, if z1, z2, · · · , zn ∈ C00 ⊂ lp are n linearly independent

vectors then the norms derived by the non-equivalent n-norms ∥·, · · · , ·∥∞ and

∥·, · · · , ·∥p with respect to linearly independent set
{
z1, z2, · · · , zn

}
are equivalent.

Where C00 is the space of complex sequences having only finitely many nonzero

terms.

In [5], we have already proved that for zt = (δti)
∞
i=0 we have

∥x∥
d

p = ∥x∥d∞ = ∥x∥∞ for all x ∈ lp. (6)

Theorem 2.5. If the sequence
(
xl
)∞
l=0

converges to x with respect ∥·, · · · , ·∥∞
then it converges to x with respect to ∥·, · · · , ·∥p also.

Proof. Let the sequence
(
xl
)∞
l=0

converges to x with respect ∥·, · · · , ·∥∞ then it

converges to x with respect to its derived norm hence in view of above equation

(6) it converges to x with respect ∥·∥∞ also. Hence due to relation (3) it converges

to x with respect to ∥·, · · · , ·∥p also.

In view of lemma 2.1, we have the following theorem.

Theorem 2.6. If the sequence
(
xl
)∞
l=0

converges to x with respect ∥·, · · · , ·∥p
then it converges to x with respect to ∥·, · · · , ·∥∞ also.

Thus above results give the following theorem.

Theorem 2.7. Sequentially equivalent n-norms need not be equivalent.
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Proof. Combining the theorems 2.5 and 2.6,we see that the two n-norms ∥·, · · · , ·∥p
and ∥·, · · · , ·∥∞ defined on lp are sequentially equivalent but in view of lemma

2.2, we see that they are non-equivalent.

3. Conclusion

From above discussions, it is clear that equivalence of derived norms need

not imply the equivalence of respective n-norms. Moreover, non-equivalent n-

norms may derive equivalent norms with respect to many linearly independent

set. Further, it has been observed that sequentially equivalent n-norms need not

be equivalent n-norms.
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