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Abstract

Summability is a branch of mathematical analysis in which an innite series

which is usually divergent can converge to a finite sum s (say) by ordinary sum-

mation techniques and become summable with the help of deferent summation

means or methods. C method was given by Ernesto Cesáro such that ordinary

Cesáro summation was written as (C, 1) summation whereas generalised Cesáro

summation was given as (C,α). In 1913, Hardy [1] proved a theorem on (C, a),

a > 0 summability of the series.

Key Words and Phrases: (D, k) means, (C,α) means, (C,α, b) means, (D, k)

(C,α) product means, Fourier Series, Conjugate Series, Lebesgue Integral.
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1. Introduction

Kuttner [2] introduced the summability method (D,α) for functions and in-

vestigated some of its properties. Pathak [7] discussed relative strength of summa-

bility |(D, k)(C, l)|p and absolute Cesáro summability. Mishra and Srivastava [6]

introduced the Summability method (C,α, β) for functions by generalizing (C,α)

summability method. In this paper, we discuss relative strength of summability

|(D, k)(C,α, β)|p and absolute Cesáro summability for functions and investigate

a relation between different sets of parameters.

2. Some Definitions

Let f(x) be any function which is Lebesgue-measurable, and that f : [0,+∞)

→ R, and integrable in (0, x) for any finite x and which is bounded in some right

hand neighbourhood of origin. Integrals of the form
∞∫
0

are throughout to be taken
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as lim
x→∞

x∫
0

,
x∫
0

being a Lebesgue integral.

Let k > 0. If, for t > 0, the integral

g(t) = g(k)(t) = kt

∞∫
0

xk−1

(x+ t)k+1
f(x)dx, (2.1)

exists and if g(t) → s as t → ∞, we say that function f(x) is summable (D, k)

to the sum s and we write f(x) → s(D, k) as x → ∞.

We note that, for any fixed t > 0, k > 0, it is necessary and sufficient for

convergence of (2.1) that
∞∫
1

f(x)

x2
dx, (2.2)

should converge .

The (C,α, β) transform of f(x), which we denote by ∂α,β(x) is given by

f(x) =
Γ(α+ β + 1)

Γ(α)Γ(β + 1)

1

xα+β

x∫
0

(x− y)α−1yβf(y)dy, (α > 0, β > −1). (2.3)

If this exists for x > 0 and ∂α,β(x) tends to a limit s as x → ∞, we say that f(x)

is summable (C,α, β) to s, and we write f(x) → s(C,α, β). We also write

Uk,α,β(t) = kt

∞∫
0

xk−1

(x+ t)k+1
∂α,β(x)dx, (2.4)

if this exists, and tends to a limit s as t → ∞, we say that the function f(x) is

summable (D, k)(C,α, β) to s.

When β = 0, (D, k)(C,α, β) and (D, k)(C,α) denote the same method.

If α ≥ 0, p ≥ 1, β > −1, we say that f(y) is summable |C,α, β|p (absolutely

summable (C,α, β)) with index p, if

∞∫
T

yp−1

∣∣∣∣ ddy∂α,β(y)
∣∣∣∣pdy < ∞ for some T ≥ 0. (2.5)

This is analogue for functions of definition for sequences given by Flett [3].

In any result involving |C,α, β|p for values of α < 1, we restrict ourselves to the
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case in which f(y) is an indefinite Lebesgue integral of a function a(y), say; this

ensures that the derivative
(

d
dy∂α,β(y)

)
exists almost everywhere.

Such a restriction is not, however, needed when α ≥ 1. By analogy with Flett

[3], it might at first sight appear and one should define |C,α, β|p−summability

by
∞∫
0

yp−1

∣∣∣∣ ddy∂α,β(y)
∣∣∣∣pdy < ∞, (α ≥ 0, β > −1, p > 1). (2.6)

Further suppose that k > 0, β > −1, α > 0 and p ≥ 1. Then we say

that the function f(y) is summable |(D, k)(C,α, β)|p or absolutely summable

(D, k)(C,α, β) with index p, if the integral defined by

Uk,α,β(y) = ky

∞∫
0

xk−1

(x+ y)k+1
∂α,β(x)dx

converges for all y > 0, and

∞∫
1

y−1

∣∣∣∣y d

dy
Uk,α,β

∣∣∣∣pdy < ∞. (2.7)

3. Main Results

In this section, we have the following theorems on the relative strength be-

tween |C, γ, β|p and |(D, k)(C,α, β)|p.

Theorem 3.1. Let α > γ ≥ 0, p ≥ 1, β > −1. If f(x) is summable |C, γ, β|p,
then it is summable |C,α, β|p.

Theorem 3.2. α ≥ 0, p ≥ 1, γ ≥ 0. If f(x) is summable |C, γ, β|p, and

the integral defined by Uk,α−1,β(y) exists for all y > 0, then f(x) is summable

|(D, k)(C,α, β)|p if k ≤ 1. Also the convergence of
∞∫
1

∂α,β(x)

x2 dx is implied by

|C, γ, β|p summability of f(x). We first prove this theorem under unreasonable

definition (2.7). However ,if the result holds with (2.7), then it must also hold

under the definition of (2.5). This follows from the following two Lemmas.

Lemma 3.1. Let p ≥ 1, γ > 1. Suppose that f(x) ∈ L(0, x) for finite x > 0.

Suppose that f(x) ∈ |C, γ, β|p, according to the definition (2.5). Define

−
f(x) =

{
f(x) for x ≥ T

0 for x < T
(3.1)
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Let ∂̄γ,β(y) denote the expression corresponding to ∂γ,β(y) but with f(x) replaced

by f̄(x). Then
∞∫
0

yp−1

∣∣∣∣ d

dy
∂γ,β(y)

∣∣∣∣pdy < ∞. (3.2)

Thus f̄(x) is summable |C, γ, β|p under the definition (2.7). (By a result due to

Mishra and Mishra [4]).

Lemma 3.2. Let the hypothesis be as in Lemma 3.1,and define f(x) as above.

Let k > 0, β > −1 and α > 0. Then |(D, k)(C,α, β)|p summability of {f(x)} and{
f̄(x)

}
are equivalent.

Proof of Lemma 3.1. We are given that, for some T > 0,

∞∫
T

xp−1

∣∣∣∣ ddx∂α,β(x)
∣∣∣∣pdx < ∞. (3.3)

But since, if (3.3) holds for given T , it holds for any greater T , it must hold for

all sufficiently large T . Now by standard properties of fractional integrals, and

since γ > 1, we have

T∫
0

(T − u)γ−2uβ |f(u)| du < ∞, (3.4)

for almost all T (and thus, in particular, for some arbitrary large T ), we may thus

suppose that T should be chosen so that (3.3) and (3.4) hold. Since ∂̄γ,β(x) = 0

for x < T , (3.2) will follow if

∞∫
T

xp−1

∣∣∣∣ ddx∂γ,β(x)
∣∣∣∣pdx < ∞.

Since (3.3) holds, this will follow from Minkowskis inequality if we prove that

∞∫
T

xp−1

∣∣∣∣ ddx {∂̄γ,β(x)− ∂γ,β(x)
}∣∣∣∣pdx < ∞. (3.5)

Now, it follows at once from the definition that, for x > T ,

∂̄γ,β(x)− ∂γ,β(x) =
Γ(γ + β + 1)

Γ(γ)Γ(β + 1)

1

xγ+β

T∫
0

(x− y)γ−1yβ f̄(y) dy
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− Γ(γ + β + 1)

Γ(γ)Γ(β + 1)

1

xγ+β

T∫
0

(x− y)γ−1yβ f(y) dy

=
Γ(γ + β + 1)

Γ(γ)Γ(β + 1)

1

xγ+β

T∫
0

(x− y)γ−1 {f̄(y)− f(y)
}
dy

= − Γ(γ + β + 1)

Γ(γ)Γ(β + 1)

1

xγ+β

T∫
0

(x− y)γ−1yβf(y) dy.

It follows easily that

d

dx

{
∂̄γ,β(x)− ∂γ,β(x)

}
=

Γ(γ + β + 1)

Γ(γ)Γ(β + 1)

1

xγ+β+1
×

T∫
0

[β(x− y) + (x− γ y)] (x− y)γ−2yβf(y) dy.

For relevant values of variables |x− γ y| ≤ x+ γ y ≤ x+ γ x, so that∣∣∣∣ ddx {∂̄γ,β(x)− ∂γ,β(x)
}∣∣∣∣ ≤ ∣∣∣∣ Γ(γ + β + 1)

Γ(γ)Γ(β + 1)

1

xγ+β+1
×

T∫
0

[β(x− y) + (x− γ y)] (x− y)γ−2yβf(y) dy

∣∣∣∣∣∣
≤ Γ(γ + β + 1)

Γ(γ)

(β + γ + 1)x

xγ+β+1

T∫
0

(x− y)γ−2yβ |f(y)| dy.

If γ ≤ 2, then for x > T , we have (x− y)γ−2 ≤ (T − y)γ−2, so that∣∣∣∣ ddx {∂̄γ,β(x)− ∂γ,β(x)
}∣∣∣∣ ≤ Γ(γ + β + 1)

Γ(γ)Γ(β + 1)

(β + γ + 1)x

xγ+β
×

T∫
0

(x− y)γ−2yβ |f(y)| dy =
Const.

xβ+γ
by (3.4).

If γ ≥ 2, then (x− y)γ−2 ≤ xγ−2, so that∣∣∣∣ ddx
{

−
∂γ,β(x)− ∂γ,β(x)

}∣∣∣∣ ≤ Γ(γ + β + 1)

Γ(γ) Γ(β + 1)

(β + γ + 1)x

xβ+2

T∫
0

|f(y)| dy =
Const.

xβ+2
.

Since γ > 1, (3.5) will follow in any case.
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Proof of Lemma 3.2. We use notations as in Lemma 3.1, and write further

Ūk,α,β(y) for the expression corresponding to Uk,α,β(y) but with f(x) replaced by

f̄(x).

We know that for any fixed y > 0, k > 0, β > −1, α > 0 conver-

gence of Uk,α,β(y) = ky
x∫
0

xk−1

(x+y)k+1 ∂α,β(x) dx, is equivalent to the convergence

of
∞∫
1

∂α,β(x)

x2 dx. Then the conclusion will follow from Minkowskis inequality, if we

show that
∞∫
1

yp−1

∣∣∣∣ ddy {Uk,α,β(y)− Ūk,α,β(y)
}∣∣∣∣pdy < ∞, (3.6)

where we take (3.6) as including the assertion that the integral defined by Uk,α,β(y)−
Ūk,α,β(y) converges for all y > 0. For large y, we have

∂α,β(y)− ∂̄α,β(y) =
Γ(γ + β + 1)

Γ(α)Γ(β + 1)

1

yα+β

T∫
0

(y − x)α−1xβf(x) dx (3.7)

= O(1)
1

yα+β
yα−1

T∫
0

(y − x)α−1xβ |f(x)| dx

= O

(
1

yα+β

)
T∫
0

xβ dx

= O

(
T

yα+β

)β+1

= O( 1
y )

β+1 , (T < y).

Hence the convergence of

ky

x∫
0

xk−1

(x+ y)k+1
∂α,β(x)

{
∂α,β(x)− ∂̄α,β(x)

}
dx,

follows at once by a result due to (Mishra and mishra [4]) . Now (3.6) is equivalent

to
∞∫
1

yp−1dy

∣∣∣∣∣∣c
∞∫
0

xk−1

(x+ y)k+2
(x− ky)

{
∂α,β(x)− ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

< ∞. (3.8)

Let T0 be any sufficiently large constant. Then (3.8) will follow from Minkowskis

inequality, if we show that

∞∫
1

yp−1dy

∣∣∣∣∣∣c
T0∫
0

xk−1

(x+ y)k+2
(x− ky)

{
∂α,β(x)− ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

< ∞ (3.9)
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∞∫
1

yp−1dy

∣∣∣∣∣∣c
∞∫

T0

xk−1

(x+ y)k+2
(x− ky)

{
∂α,β(x)− ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

< ∞ (3.10)

For x < T0, we have |x− k y| ≤ x + kx ≤ x(k + 1) ≤ T0(k + 1) = C (Const.).

By (3.9), we have

∞∫
1

yp−1dy

∣∣∣∣∣∣c
T0∫
0

xk−1

(x+ y)k+2
(x− ky)

{
∂α,β(x)− ∂̄α,β(x)

}
dx

∣∣∣∣∣∣
p

≤ O(1)
∞∫
1

yp−1dy

∣∣∣∣∣y−k−2
T0∫
0

xk−1dx

∣∣∣∣∣
p

= O(1)
∞∫
1

yp−1dy
∣∣y−k−2T k

0

∣∣p
= O(1)

∞∫
1

y−kp−p−1dy = O(1)
[
y−kp−p

]∞
1

= O(1).

Hence (3.9) follows. By (3.7), the expression on the left of (3.10) does not exceed

a constant. Thus by [8]

∞∫
1

yp−1dy

∣∣∣∣∣∣∣c
∞∫

T0

xk−1

(x+ y)k+2
(x− ky)

{
∂α,β(x)− ∂̄α,β(x)

}
dx

∣∣∣∣∣∣∣
p

=
∞∫
1

yp−1dy

∣∣∣∣∣c ∞∫
T0

(x+ y)−2o( 1x)
β+1

dx

∣∣∣∣∣
p

=
∞∫
1

yp−1dy

∣∣∣∣∣c ∞∫
T0

(x+ y)−2o( 1x)
β+1

dx

∣∣∣∣∣
p

= O(1)

∞∫
1

yp−1dy

∣∣∣∣∣∣∣
∞∫

T0

(x+ y)−2x−β−1 dx

∣∣∣∣∣∣∣
p

(3.11)

By an obvious change of variables the expression (3.11) is equal to

O(1)

∞∫
1

yp−1dy

∣∣∣∣∣∣
∞∫
y

t−2(t− y)−β−1 dt

∣∣∣∣∣∣
p

= O(1)

∞∫
1

yβ p−p−1dy = O(1)C = C.

The result follows.

Proof of Theorem 3.2. We divide the proof into the following cases.

Case I. α > γ
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Case II. α = γ

Case III. α < γ

Here we observe that Case I and II follow from case III, with the aid of

Theorem 3.1., for, if α ≥ γ, choose any γ′ > α, summability |C, γ, β|p implies

summability |C, γ′, β|p by Theorem 3.1, and it follows from Case III, that this

implies |(D, k)(C,α, β)|p. Hence it is sufficient to consider the case III only.

Proof of Case III. Since f(x) → s(C,α, β) implies that f(x) → s(C,α′, β) for

α′ > α > 0, there is no loss of generality in considering the Case γ = α+ k, k is

a positive integer.

We have, by (Mishra & Mishra [4])

d

dy
Uk,α,β(y) = C

∞∫
T0

xk−1

(x+ y)k+2
(x− ky) ∂α,β(x) dx. (3.12)

Now, by definition

∂α+p ,β(x) =
Γ(α+ β + 1)

Γ(α+ p+ γ)(γ + β + 1)

1

yα+β+p

x∫
0

(x− t)α−γ+p−1tγ+β∂α,β(t)dt.

Putting p = 1 and α = γ, we see that

∂α+1 ,β(x) =
(α+ β + 1)

xα+β+1

x∫
0

tα+β∂α,β(t)dt. (3.13)

We also write Rα,β(x) =
∞∫
x

∂α,β(t)

t2
dt.

It is clear that, whenever
∞∫
1

∂α,β(x)

x2 dx converges, Rα,β(x) is defined for x > 0,

and that Rα,β(x) → 0 as x → ∞. It follows immediately from (3.13) that

∂α+1 ,β(x) = −(α+ β + 1)

xα+β+1

x∫
0

tα+βt2dRα,β(t)dt = O(x1)

and hence that, for p ≥ 1,

∂α+1,β(x) = O(x1) (3.14)

Now by (3.12), we have

d

dy
Uk,α,β(y) = C

∞∫
0

xk−α−β−1

(x+ y)k+2
(x− ky)xα+β∂α,β(x)dx. (3.15)
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Integrating (3.15) by parts k times, we deduce with the help of (3.14) that

d

dy
Uk,α,β(y) = (−1)kC

∞∫
0

xα+β+k∂α+k,β(x)

{
dk

dxk

[
xk−α−β−1

(x+ y)k+2
(x− ky)

]}
dx.

(3.16)

It is easily verified that the expression in curly brackets (3.16) using result of [10]

is

O

(
xk−α−β−1

(x+ y)k+1

)
. (3.17)

Let

R(x, y) =

x∫
0

tα+β+k dk

dxk

[
tk−α−β−1

(t+ y)k+2
(t− ky)

]
dt.

In fact, for fixed k > 0, we have uniformly in x > 0, y > 0,

R(x, y) = O

(
xk

(x+ y)k+1

)
. (3.18)

This may be proved by induction on k, if k = 0, we have

R(x, y) =

x∫
0

tα+β

[
tk−α−β−1

(t+ y)k+2
(t− ky)

]
dt =

xk

(x+ y)k+1
,

hence the result is evident. Suppose that k ≥ 1, and assume the result true for

k − 1. Integrating by parts, we have

R(x, y) = xα+β+k dk−1

dxk−1

[
xk−α−β−1

(x+ y)k+2
(x− ky)

]
− (α+ β + k)

x∫
0

tα+β+k+1×

∂k−1

∂tk−1

{
tk−α−β−1

(t+ y)k+2
(t− ky)

}
dt.

the first term is of required order by (3.17) (with k replaced by k − 1), and the

second by induction hypothesis. Now integrating (3.16) by parts, we have

d

dy
Uk,α,β(y) =

∞∫
0

R(x, y)

(
d

dx
∂α+k,β(x)

)
dx =

∞∫
0

R(x, y)

(
d

dx
∂γ,β(x)

)
dx.

Since the integrated term tends to 0 as ∂γ,β(x) is bounded and R(x, y) → 0 as

x → ∞. Now we have∣∣∣∣ ddyUk,α,β(y)

∣∣∣∣p ≤ c

∣∣∣∣∣∣
∞∫
0

{
R(x, y) xp−1

} 1
p

(
d

dx
∂γ,β(x)

) {
R(x, y)

x

} 1
q

dx

∣∣∣∣∣∣
p

.
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Applying Holders inequality with indices p and p
p−1 , we have∣∣∣∣ ddyUk,α,β(y)

∣∣∣∣p ≤ c

∞∫
0

{
R(x, y)xp−1

} ∣∣∣∣ ddx∂γ,β(x)
∣∣∣∣p


∞∫
0

|R(x, y)|
x

dx


p−1

.

Using (3.18) and putting x = t y, we see that the expression in curly brackets

≤ C

x∫
0

xk−1

(x+ y)k+1
dx =

C

y

x∫
0

tk−1

(1 + t)k+1
dt =

C

y
,

(Since the integral converges). Hence
∞∫
0

yp−1

∣∣∣∣ ddyUk,α,β(y)

∣∣∣∣p ≤
∞∫
0

dy

∞∫
0

xp−1

∣∣∣∣ ddx∂γ,β(x)
∣∣∣∣p |R(x, y)| dx

= C

∞∫
0

xp−1

∣∣∣∣ ddx∂γ,β(x)
∣∣∣∣pdx |R(x, y)| dy.

Again using (3.18), the inner integral

≤ C xk
∞∫
0

1

(x+ y)k+1
dy (3.19)

on putting y = x t, the expression on the right of (3.19) is equal to

C

∞∫
0

1

(1 + t)k+1
dt = C.

Now
∞∫
1

∂α,β(x)

x2
dx =

x∫
1

xα+β∂α+β(x)

xα+β+2
dx

=
∂α+1,β(x)

(α+ β + 1)x
−

∂α+1,β(1)

(α+ β + 1)
+

(α+ β + 2)

(α+ β + 1)

x∫
1

∂α+1,β(x)

x2
dx.

But we have by [11]
∞∫
1

xp−1

∣∣∣∣ ddx∂α+1,β(x)

∣∣∣∣pdx < ∞.

Also

∂α+1,β(x) = ∂α+1,β(1) +

x∫
1

(
d

dx
∂α+1,β(x)

)
dx. (3.20)
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By Holders inequality with indices p and q, we have by [9]∣∣∣∣∣∣
x∫

1

(
d

dx
∂α+1,β(x)

)
dx

∣∣∣∣∣∣ ≤
 x∫

1

xp−1

∣∣∣∣ ddx∂α+1,β(x)

∣∣∣∣p dx

 1
p
 x∫

1

1

x
dx

 1
q

(3.21)

= O (log x)1/q.

From (3.20) and (3.21), we see that
∞∫
1

∂α,β(x)

x2 dx is convergent .
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