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Abstract

Summability is a branch of mathematical analysis in which an innite series
which is usually divergent can converge to a finite sum s (say) by ordinary sum-
mation techniques and become summable with the help of deferent summation
means or methods. C' method was given by Ernesto Cesaro such that ordinary
Cesdro summation was written as (C, 1) summation whereas generalised Ceséro
summation was given as (C,«). In 1913, Hardy [1] proved a theorem on (C,a),
a > 0 summability of the series.

Key Words and Phrases: (D, k) means, (C, «) means, (C, a, b) means, (D, k)
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1. Introduction

Kuttner [2] introduced the summability method (D, «) for functions and in-
vestigated some of its properties. Pathak [7] discussed relative strength of summa-
bility [(D, k)(C,1)|, and absolute Cesdro summability. Mishra and Srivastava [6]
introduced the Summability method (C, a, ) for functions by generalizing (C, «)
summability method. In this paper, we discuss relative strength of summability
(D, k)(C, a, B)|, and absolute Cesdro summability for functions and investigate
a relation between different sets of parameters.

2. Some Definitions

Let f(x) be any function which is Lebesgue-measurable, and that f : [0, +00)
— R, and integrable in (0, x) for any finite x and which is bounded in some right

oo
hand neighbourhood of origin. Integrals of the form | are throughout to be taken
0
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xT

x
as lim [, [ being a Lebesgue integral.
0

T—00 0

Let k£ > 0. If, for ¢t > 0, the integral

o(t) = g®(t) = kt / o ) (2.1)
0

exists and if g(t) — s as t — oo, we say that function f(z) is summable (D, k)
to the sum s and we write f(z) — s(D, k) as x — oo.

We note that, for any fixed ¢ > 0, k > 0, it is necessary and sufficient for

convergence of (2.1) that
[ 1)
1

The (C, a, 8) transform of f(x), which we denote by 0, g(x) is given by

should converge .

T

Llatp+1) 1 /(x —y)* Wy, (a>0,5>-1).  (23)

1) = ST (1) 7077 /

If this exists for > 0 and 9, g(x) tends to a limit s as x — oo, we say that f(x)
is summable (C, «, 8) to s, and we write f(z) = s(C,«, 3). We also write

Tkl
Uk,a,,@(t) = kt/ m@a”@’(ﬁﬂ)d$, (24)
0

if this exists, and tends to a limit s as t — oo, we say that the function f(x) is
summable (D, k)(C, a, f) to s.

When 8 =0, (D, k)(C,a, ) and (D, k)(C,«) denote the same method.

Ifa>0,p>1, > —1, wesay that f(y) is summable |C, a,B\p (absolutely
summable (C, a, #)) with index p, if

[e.9]
Jr

T

p

d
dy < oo forsome T > 0. (2.5)

@aa,ﬂ (y)

This is analogue for functions of definition for sequences given by Flett [3].
In any result involving |C, «, |p for values of o < 1, we restrict ourselves to the
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case in which f(y) is an indefinite Lebesgue integral of a function a(y), say; this

ensures that the derivative %80175(34)) exists almost everywhere.

Such a restriction is not, however, needed when o« > 1. By analogy with Flett
[3], it might at first sight appear and one should define |C, a, 8 \p—summability
by
o0

[
0

@aa,ﬁ (y)

P
dy < o0, (a>0,6>—1,p>1). (2.6)

Further suppose that £k > 0, 8 > —1, @« > 0 and p > 1. Then we say
that the function f(y) is summable |(D,k)(C,a, 3), or absolutely summable
(D, k)(C,a, B) with index p, if the integral defined by

[e.o]

oE—1
Uk,a,8(y) = ky O/WGa,B(x)dw
converges for all y > 0, and
/y yd—yUk,a,g dy < oo. (2.7)
1

3. Main Results

In this section, we have the following theorems on the relative strength be-
tween |C, v, 8], and (D, k)(C, a, B)],.

Theorem 3.1. Let « > v >0,p>1, 3> —1. If f(z) is summable |C,, ],
then it is summable |C, o, B|,,.

Theorem 3.2. a > 0, p > 1, v > 0. If f(z) is summable |C,~,],, and
the integral defined by Uy o—1(y) exists for all y > 0, then f(x) is summable

(D, k)(C.a,B)|, if k& < 1. Also the convergence of i a“%x)da} is implied by
1

|C,~, B|p summability of f(z). We first prove this theorem under unreasonable
definition (2.7). However ,if the result holds with (2.7), then it must also hold
under the definition of (2.5). This follows from the following two Lemmas.

Lemma 3.1. Let p > 1, v > 1. Suppose that f(z) € L(0,z) for finite z > 0.
Suppose that f(z) € |C,~, 8|, according to the definition (2.5). Define

- { f(x) forz>T

0 for x<T (3.1)
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Let 0 5(y) denote the expression corresponding to 9, 5(y) but with f(x) replaced
by f(z). Then

[v

0

Thus f(z) is summable |C,~, 8], under the definition (2.7). (By a result due to
Mishra and Mishra [4]).

p

d dy < oo. (3.2)

dfyaw(y)

Lemma 3.2. Let the hypothesis be as in Lemma 3.1,and define f(z) as above.
Let k>0, 8> —1and a > 0. Then |(D, k)(C, o, 8)|,, summability of {f(z)} and
{f(z)} are equivalent.

Proof of Lemma 3.1. We are given that, for some T > 0,

o
T

p

%&lﬁ(x) dr < oc. (3.3)

But since, if (3.3) holds for given T, it holds for any greater 7', it must hold for
all sufficiently large T. Now by standard properties of fractional integrals, and
since v > 1, we have

T
/ (T —u)"2u? | f ()] du < oo, (3.4)
0

for almost all T' (and thus, in particular, for some arbitrary large T'), we may thus
suppose that 7" should be chosen so that (3.3) and (3.4) hold. Since 9, g(x) =0
for x < T, (3.2) will follow if

p

d
dr < 00.

p—1
/””” d

Tca%B (z)
T

Since (3.3) holds, this will follow from Minkowskis inequality if we prove that

o0

T

p

d
dzr < oo. (3.5)

dx {5%6(1’) - 8%5(@}

Now, it follows at once from the definition that, for x > T,

T
5%ﬂ(5”) —Oy8(2) = 11:((:;)4{‘_(%—:_ 11)) mlJrﬁ / (z — y)v_lyﬁf(y) dy
0
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T
f(y)dy
O/

T

'+p6+1) 1

~ T 6+1aﬁ+ﬁ/ W W dy
0

It follows easily that

d = v+ B8+1) 1
%{a'y,ﬁ( T) — 87,3( )} L(y)T (5+1>$7+3+1

T
[ 186 =w)+ @10 -5 2 ) dy
0
For relevant values of variables |x —vyy| <z +~vy < x4+ vz, so that

d .- 1 1
-] <[ L

T
/ Ble—y)+ (@ — 1) (@ — 92 f(y) dy
0

T
Ty+B8+1) (B+y+1)a 2P I
- F("}/) rY+B8+1

|f(W)] dy.

0
If v < 2, then for > T, we have (x — y)Y~2 < (T — y)'~2, so that

i{g }‘ 7+5+ H@B+y+1)z

dx 8(x) = Ohpla rpg+1) xVth
T
/ T—y 2yﬁlf(y)ldyzﬁ by (3.4).
0

If 4 > 2, then (z — y)?~2 < 2772, so that

o0 - amm)}\swr(ﬁﬂ) ik

Since v > 1, (3.5) will follow in any case.

11

T
L'(y+B+1) (5+’Y+1)3:/|f(y)‘ dy:Const.
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Proof of Lemma 3.2. We use notations as in Lemma 3.1, and write further
Uk.a5(y) for the expression corresponding to Uy o 5(y) but with f(z) replaced by

f(x).
We know that for any fixed y > 0, &k > 0, 8 > —1, a > 0 conver-

T
gence of Up 0 p(y) = ky [ (xf;% Ou,5() dz, is equivalent to the convergence
0

of f aa%z(m)dm. Then the conclusion will follow from Minkowskis inequality, if we

[

1
where we take (3.6) as including the assertion that the integral defined by Uy, o g(y)—

Uk.o.5(y) converges for all y > 0. For large y, we have

1
show that
P

(W) = Ukap(y)}| dy < oo, (3.6)

T
Oa,5(y) — Da,p(y) = 58;(2111)) yaiﬁ / (y —2)* 2P f(z) da (3.7)
0

T
— Oy [ (= )] da

< M) [ 2% da

B+1
(i) —oGPT. (<
Hence the convergence of
R
ky /(Hy)kH 2) {0a,5(x) = Oap(x)} dz,
0

follows at once by a result due to (Mishra and mishra [4]) . Now (3.6) is equivalent
to

0 [e%s) p

- oh1 ~
/yp Yay c/m(m— ky) {0a,p(z) — Oap(z)} dz| < oco. (3.8)
J ) (z+y)
Let Tp be any sufficiently large constant. Then (3.8) will follow from Minkowskis

inequality, if we show that

fe'e) To p

- Rl -
1/y dy co/w(x—ky) {8%3(3:) —(‘9&75(30)} dr| < oo (3.9)
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00 B 00 xk—l ) p
l/y dy cj{wy)k”(w— ky) {0ap(z) — Oap(z)} dz| < oo (3.10)

For z < Ty, we have |z —ky| < z+ ke < x(k+1) < To(k+ 1) = C (Const.).
By (3.9), we have

[e'e] ) To xkfl ) p
/yp_ dy C/ W(Qﬁ — ky) {804,/3($) — 8a75($)} d-:U
1 0

p

[e'e] To
<0Q) [y~ dy |y *2 [ 2Fldz
1 0

—o(1) f’F YLy [y R2 TP

=0(1 fy fep=ldy = O(1) [y~*rr] " = O(1).

Hence (3.9) follows. By (3.7), the expression on the left of (3.10) does not exceed
a constant. Thus by [§]

p
/ P=ldy c/ k+2 x — ky) {aaﬂ(x) —éaﬂ(a:)} dx
o0 oo p
= [y ldyle [ (2 +y)Po(2) " do
1 To
[ee) [e.e] p
= [y ldy|c [ (J:—i—y)fzo(%)m—l dz
1 To
[e.e] o0 p
= O(l)/yp_ldy /(:L'—l—y)_Qx_B_l dx (3.11)
1 0
By an obvious change of variables the expression (3.11) is equal to
) ) p )
O(l)/yp_ldy /ﬂ(t—y)—ﬁ—ldt _ 0(1)/yﬁp—p—1dy _on)C = .
1 Y 1

The result follows.

Proof of Theorem 3.2. We divide the proof into the following cases.
Casel. a>~v
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Case II. a=~v
Case III. a <7y

Here we observe that Case I and II follow from case III, with the aid of
Theorem 3.1., for, if o > ~, choose any 7 > «, summability ]C’,'y,ﬁ|p implies
summability |C,~/, 8|, by Theorem 3.1, and it follows from Case III, that this
implies (D, k)(C, a, B)|,. Hence it is sufficient to consider the case III only.

Proof of Case III. Since f(z) — s(C,a, ) implies that f(z) — s(C,d/, 3) for
o’ > a > 0, there is no loss of generality in considering the Case v = o + k, k is
a positive integer.

We have, by (Mishra & Mishra [4])

d -1
_ . 12
d Uk: a,,B C/ ZL‘ N y k+2 ( ky) 8(1”3(1’) dx (3 )

Now, by definition

T

I'a+p+1) 1 APy B
T(a+p+7)(y+ B +1)yotBtr / (z—1) 777 00,5 (t)dt.
0

Putting p =1 and a = 7, we see that

a+pB+1 [ o
Oat1,5(T) = W/t T80 5(t)dt. (3.13)

0

We also write Raﬁ(ﬂj‘) = f %‘jﬂdt.

T

o
It is clear that, whenever [ 6“%2(:0)(1:6 converges, R, g(x) is defined for > 0,

1
and that R, g(x) — 0 as  — oo. It follows immediately from (3.13) that

T

a+p+1 o
Oat1,p(1) = —(ngJrl)/t AR, p(t)dt = O(x")
0
and hence that, for p > 1,
Bus1,5(x) = O(a") (3.14)

Now by (3.12), we have

d c]oxk o ka0, 5(x)da (3.15)
dy Ukasly / (:13—1—yk+2 Y P ' '
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Integrating (3.15) by parts k times, we deduce with the help of (3.14) that

d k Ji +B+k d¥ k-a=f-1

(3.16)
It is easily verified that the expression in curly brackets (3.16) using result of [10]
is
l,k—oz—ﬁ—l
O| ————|. (3.17)
((.%' + y)k+1
Let N
dk tkfafﬂfl
Rlz,y) = / gtk T ey | .
0 dzk | (¢ 4 y)**+?
In fact, for fixed k£ > 0, we have uniformly in z > 0, y > 0,
@) =0 —= .18
R(z,y) = — . 3.18
(1‘ +y)k+1
This may be proved by induction on k, if £ = 0, we have
a th—a—f—1 o
R(x. :/ta+5 -k |dt=— "
( y) ) (t + y)k+2 ( y) (:1: + y)k-i-l

hence the result is evident. Suppose that k& > 1, and assume the result true for
k — 1. Integrating by parts, we have

xT

xkfozfﬂfl
k)| - @+ a+E) / kB
0

) dk 1

(z+y)

ak—l tk—oz—ﬁ—l
t—k dt.
o1 (¢ + 42 ( y)
the first term is of required order by (3.17) (with k replaced by k — 1), and the
second by induction hypothesis. Now integrating (3.16) by parts, we have

o= [ 100 (s = [ ()

Since the integrated term tends to 0 as 0, g(x) is bounded and R(x,y) — 0 as
x — oo. Now we have

T<e /Oo{Rmy) 2 (000 {M}d ,,
0

d
7U a
‘dy k, ,,B(Z/)
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Applying Holders inequality with indices p and = 1, we have
o 0o p—1
4 ' 1y | d | TR, y)
0 0

Using (3.18) and putting x = ty, we see that the expression in curly brackets

k—1 7 k1
SC/xkldm:C/mdtzcv
/ (z+y)"" v (1+1)"F y

(Since the integral converges). Hence

/y”_l jy ka8 (Y /dy/ﬂ’ ‘ Oyp(x)| |R(z,y)| do
0
—C/xpl )| dx 1R, y)] dy.
Again using (3.18), the inner integral
< CazF /1dy (3.19)
— J ($+y>k+1

on putting y = x t, the expression on the right of (3.19) is equal to

o0

1
0

Now
% O p() z 2089, 5(2)
a,B _ a+p3
1f 22 dx _1f pot+B+2 dx
Ouirple) _ Owirsll) | (04542 §hnsla)

“(@tBtlzr (@+B+1) (a+ Bty a?
But we have by [11]

P
dr < oo.

o.ld
ot | onnsto
1

Onirle) = Ourra®) + [ (- 0015(0)) (3.20)
1

Also
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By Holders inequality with indices p and ¢, we have by [9]

P P Z
1
dzx / —dx
x
1

Q=

r/d rld
/(dxaaﬂ,ﬁ(%)) dr| < /«’L’p 1‘dz80‘+1’5(x)
1 1

= O (logz)"/1.

(3.21)

o
From (3.20) and (3.21), we see that [ 8"%2(1‘) dx is convergent .
1

[10]

[11]
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