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Abstract

In this paper, we study an SEIR epidemic model with diffusion. The model is

analyzed using stability theory of differential equations. Equilibrium points and

conditions of local stability of the system are determined. Basic reproduction

number of the model is computed by next generation matrix approach. It is

observed that endemic equilibrium point exists only if basic reproduction number

is greater than one otherwise disease vanishes from the system. Further, it is

observed that diffusion plays a significant role in stability of the system.
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1. Introduction

An intensive worldwide effort is speeding up the developments in the estab-

lishment of a global surveillance network for combating emergent and re-emergent

infectious diseases over the last years. Scientists from different fields extending

from medicine and molecular biology to computer science and applied mathe-

matics have made collective efforts for the rapid assessment of potentially urgent

situations. Toward this aim mathematical modelling plays an important role

that focus on predicting, assessing, and controlling potential outbreaks of such

diseases. To better understand and model the dynamics of diseases, it is im-

perative to determine the impact of numerous variables ranging from the micro

hostpathogen level to host-to-host interactions. Mathematical models have been

proved helpful to study ecological, social, economic, and demographic impacts on

the spread of infectious diseases. Among these diseases, most of the diseases are

virus generated that range from mild or even asymptomatic infection to an acute

fatal disease.

Many epidemiologists [1-6] have considered such types of diseases and mod-

eled them to find control strategies. The standard (Kermack-McKendrick) epi-

demic models are the basic models that are used to study the dynamics of any
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disease. During the last three decades, there has been growing interest in the

study of infectious diseases [1-12].In particular, Verma [12], studied a predator-

prey eco-epidemiological SEI model. Predator population is assumed to contract

disease, when they come into contact with infected prey population for their food.

Author has done the mathematical analysis of the model for stability, persistence

and impermanence. Basic reproduction number is also derived in the research

article.

Present paper contains a separate class of exposed population in the basic

SIR model. Moreover, to take into account the continuous movement of different

individuals among the compartments, we include diffusion term in each equation.

2. Mathematical Model

We stratify total population N(t) into four compartments: susceptible pop-

ulation S(t), exposed population E(t), infectious population I(t) and recovered

population R(t). In addition, we assume that the population is homogeneous and

closed. Therefore, at any time t, the total density N(t) of the population is given

by

N(t) = S(t) + E(t) + I(t) +R(t).

It is assumed that the influx of susceptible come from a single source, a con-

stant recruitment rate A and they are removed by natural death at the death rate

d. Moreover, it is assumed that the disease spread among the susceptible popu-

lation through direct contact with the infectious host. It is further assumed that

after infection, an individual stays in latent period before becoming infectious.

The natural death rate d is assumed to be constant for all the compartments. The

incidence term of infection from infectious to susceptible population is assumed

to be bilinear, βIS, where β is the transmission coefficient of infection. µ is the

rate of transfer from exposed to infectious class, such that 1
µ is the mean latent

period. Infectious population is assumed to be recovered at the rate, γ with the

recovery period, 1
γ .

Based on the above assumptions the classical SEIR model is given by:

dS

dt
= A− βIS − dS,

dE

dt
= βIS − (d+ µ)E,

dI

dt
= µE − (d+ γ)I,

dR

dt
= γI − µR,

(1)
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with the initial conditions S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0. Further,

since value of R can be determined if S, E and I are known, hence we can omit

last equation of the system (1). Now, considering the effect of diffusion in each

compartment of the population and omitting the last equation, our model takes

the following form:

∂S

∂t
= A− βIS − dS +DS

∂2S

∂x2
,

∂E

∂t
= βIS − (d+ µ)E +DE

∂2E

∂x2
,

∂I

∂t
= µE − dI − γI +DI

∂2I

∂x2
,

(2)

where DS , DE and DI are the diffusion coefficient of the susceptible, exposed,

infectious population respectively.

3. Boundedness and Dissipative Analysis

To analyze the existence and stability of the equilibrium points, we find the

region of attraction in the following theorem.

Theorem. All the solutions of the system (2) are bounded and dissipative.

Proof. Let us define a function W = S + E + I. From (2), we have

dW

dt
= A− dS − dE − dI − γI ≤ A− d(S +E + I).

Let us choose δ > 0, such that

dW

dt
+ δW ≤ A− d(S + E + I) + δ(S +E + I)

= A− (d− δ)S − (d− δ)E − (d− δ)I.

If δ < d, then we have dW
dt + δW ≤ A.

Applying the theory of differential inequality, we get 0 ≤ W ≤ A
δ +W (S0, E0,

I0), for t → ∞, 0 ≤ W ≤ A
δ . Therefore, all the solutions of system (2) enter into

the region B = {(S,E, I);W ≤ A
δ + ϵ, for any ϵ > 0}.

Hence, the system (2) is bounded.

Now, we prove that the system (2) is dissipative. If (S(t), E(t), I(t)) be any

solution with initial conditions S(0) > 0, E(0) > 0, I(0) > 0, then we conclude

from dS
dt ≤ A − dS and standard comparison theorem that lim

t→∞
SupS(t) ≤ A

d .

Similarly we can prove for E(t) and I(t).
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Hence, the system (2) is dissipative.

4. Basic Reproduction Number

Basic reproduction number is a significant metric in mathematical epidemiol-

ogy, denoted by R0. It is defined as the number of secondary infections produced

by a single infected in a completely susceptible population. It determines whether

the disease will spread in the population or vanish. If R0 > 1 disease spreads

in the population whereas if R0 < 1 disease vanishes. Although its value does

not clearly states the severity of disease yet its higher value confirms that it will

be difficult to control the disease as the population required to get infected for

developing herd immunity, given by 1− 1
R0

gets higher.

Here, we will use Next Generation Matrix (NGM) approach given in Driess-

che [13] to determine the basic reproduction number. For this, we arrange the

equations of system (2) beginning with the exposed population. The method is a

direct application of lemma 1 in Driessche [13]. The decomposition of the model

into components ℜ1 and ℜ2 leads to a system of the form X = ℜ1 −ℜ2, where

ℜ1 =


βIS

0

−βIS

0

 , ℜ2 =


(d+ µ)E

−µE + (d+ γ)I

−A+ dS

−γI + µR


and X =

[
dE
dt ,

dI
dt ,

dS
dt ,

dR
dt

]
.

Since the infected compartments are E and I, at the disease-free equilibrium

point, we define

R1 =

[
∂(ℜ1)l
∂xj

]
, R2 =

[
∂(ℜ2)l
∂xj

]
for 1 ≤ l, j ≤ 2 giving

R1 =

[
0 βA

d

0 0

]
and R2 =

[
d+ µ 0

−µ d+ γ

]
.

Note that R1 is non-negative, R2 is a non-singular M-matrix, its inverse, R2
−1 is

non-negative and R1R2
−1 is non-negative. According to Diekmann [14], R1R2

−1

is the next generation matrix. In this case, if

A = R1R
−1
2 =

1

(d+ µ)(d+ γ)

 βA

d
µ

βA

d
(d+ µ)

0 0


then, the spectral radius of A is given by λ = βAµ

d(d+µ)(d+γ) .

Hence, basic reproduction number is given by R0 =
βAµ

d(d+µ)(d+γ) .
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5. Equilibrium Analysis

An equilibrium point of a dynamical system is a value of the state variables

where the state variables do not change. In other words, we may define an

equilibrium point of the system as a solution that does not change with time.

This means if the systems starts at an equilibrium, the state will remain at the

equilibrium forever.

System (2) has two equilibrium points, disease free equilibrium point E1 =(
A
d , 0, 0

)
and endemic equilibrium point E2 = (Ŝ, Ê, Î), where

Ŝ =
(d+ µ)(d+ γ)

βµ
, Ê =

(d+ γ)

µ

(
Aβµ− d(d+ γ)(d+ µ)

β(d+ µ)(d+ γ)

)
,

Î =
Aβµ− d(d+ γ)(d+ µ)

β(d+ µ)(d+ γ)
.

Remark. It is observed that E2 exist if and only if Aβµ > d(d + µ)(d + γ).

That is, if R0 > 1, the pathogen is able to invade the susceptible population and

disease spreads among the population. However, if R0 < 1, endemic equilibrium

point does not exist and infection dies out.

6. Stability Analysis

It is important to discuss the local stability of equilibrium points as practi-

cally initial data is not known and we wish to find the impact of small perturbation

in the equilibrium points on the system. To study the local stability of system,

we find the variational matrix of system. Stability of an equilibrium point is

determined by the signs of the real parts of the eigenvalues of the variational

matrix.

To determine stability conditions for disease free equilibrium pointE1(S̄, 0, 0),

we linearize the system of equations given by (2) about E1 by substituting

S = s + S̄, E = e + 0 and I = i + 0. After substitution and neglecting non-

linear terms we obtain the following set of differential equations linear in s, e and

i:
∂s

∂t
= −βiS̄ − ds+DS

∂2s

∂x2
,

∂e

∂t
= βiS̄ − (d+ µ)e+DE

∂2e

∂x2
,

∂i

∂t
= µe− (d+ γ)i+DI

∂2i

∂x2
.

(3)

Let us assume the solution of system (3) as
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s = α1e
σt cos p1x, e = α2e

σt cos p1x, i = α3e
σt cos p1x,

where α1, α2, α3 and σ are constants, p1 is another constant known as the wave

number of perturbations.

The variational matrix about E1(S̄, 0, 0) is given by

V (E1) =

 −d−DS p21 0 −βS̄

0 −d− µ−DE p21 βS̄

0 µ −d− γ −DI p
2
1


whose two eigenvalues can be obtained from the equation

λ2 + λ(2d+ µ+ γ +DE p21 +DI p
2
1) + (d+ µ+DE p21)(d+ γ +DI p

2
1)− βS̄µ = 0,

and the third eigenvalue is −d−DS p21.

Clearly, we conclude that E1 is stable or unstable according as

βS̄µ < or > (d+ µ+DE p21)(d+ γ +DI p
2
1).

Similarly, to determine stability conditions for endemic equilibrium point

E2(Ŝ, Ê, Î), we linearize the system of equations given by (2) about E2 by sub-

stituting S = s+ Ŝ, E = e+ Ê and I = i+ Î. After substitution and neglecting

non-linear terms we obtain the following set of differential equations linear in s,

e and i:

∂s

∂t
= −βiŜ − βsÎ − ds−DS

∂2s

∂x2

∂e

∂t
= βiŜ + βsÎ − (d+ µ)e−DE

∂2e

∂x2
,

∂i

∂t
= µe− (d+ γ)i−DI

∂2i

∂x2
.

(4)

The variational matrix about E2(Ŝ, Ê, Î) is given by

V (E2) =

 −βÎ − d−DS p21 0 −βŜ

βÎ −d− µ−DE p21 βŜ

0 µ −d− γ −DI p
2
1

 .

Eigenvalues corresponding to above variational matrix can be obtained from

λ3 +A1λ
2 +A2λ+A3 = 0
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where

A1 = 3d+ µ+ γ + βÎ + (DE +DI +DS)p
2
1,

A2 = (2d+ µ+ γ + 2DE p21)(βÎ + d+DS p21) + {(d+ µ+DE p21)(d+ γ

+DI p
2
1)− βŜµ},

A3 = (βÎ + d+DS p21){(d+ µ+DE p21)(d+ α+DI p
2
1)− βŜµ}+ β2ŜÎµ.

By Routh-Hurwitz criteria, we conclude that the eigen values of V (E2) are

negative and hence endemic equilibrium point E2 is asymptotically stable if A1 >

0, A3 > 0 and A1A2 −A3 > 0.

7. Results and Discussion

We have studied the effect of diffusion on the SEIR model by considering

the migration of population in each compartment. The system is analyzed for its

equilibria and their stability. System has two equilibrium points. Basic repro-

duction number of the model is computed using next generation matrix method.

Conditions of local asymptotic stability of disease free and endemic equilibrium

points are computed and it is observed that the diffusion term has an important

role in defining the stability conditions of the system.
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