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Abstract

The present paper deals with a non-linear mathematical model of three

species food chain community having ratio-dependent functional response, where

all the species are subjected to optimal harvesting effort with tax as a control in-

strument to avoid over exploitation of populations. Mathematical analysis of the

model equations with regard to the boundedness of solutions, existence of interior

equilibrium and their stabilities are carried out. A combined harvesting policy

for prey, middle predator and top predator species is discussed by using Pontrya-

gin’s Maximum Principle. To verify our mathematical analysis some numerical

simulations are carried out.

Keywords : Food chain, Optimal-Harvesting, Ratio-dependent, Boundedness,

Taxation.

1. Introduction

In recent years, there is a growing interest in the research field of ratio de-

pendent food chain. In the environment food chains and webs are highly complex

and interdependent. Food chain can be modeled by the system of ordinary dif-

ferential equations that approximate species or functional feeding group behavior

with a variety of functional responses. Many simple two species food chain mod-

els have been thoroughly explored, while new discoveries continue to be made in

examining models with three or four trophic levels (e.g. Moghadas and Gummel

2003). Hsu et al. (2003) discussed a ratio-dependent food chain model and its

application in biological control process with Michaelis-Menten type functional

response. They proved that food chain model is rich in boundary dynamics and

if interior equilibrium point doesnt exist then top predator faces extinction and

provide a scenarios for biological control. Further Agarwal and Singh (2011,

2013) analyzed three species ratio dependent food chain model with delay and

Michaelis-Menten type and Holling type-II functional response, they found that

this model is best use in bio control on pest. The present paper is extension of
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our paper (2011), here we consider the ratio dependent three species food chain

model subjected to optimal harvesting effort with tax as a control instrument to

avoid over exploitation of populations.

The study of population dynamics with harvesting is a subject of mathe-

matical bio economics and is mainly concerned with the optimal management of

renewable resources, (Clark, 1990). Harvesting is commonly practiced in fisheries,

forestry and wild life management. Azar, et al., 1995; Kumar, et al., 2002 have

investigated the harvesting of predator species predating over two preys. The con-

stant harvesting rate is treated as a control parameter and the system changes

its stability to limit cycle when harvesting exceeds a certain limit. The issue that

makes these studies difficult is how to drive strategies to maximize the revenues

and sustain the populations. Since affecting one population may have unforeseen

economic and for ecological consequences for the other, (Armsworth and Rough-

garden, 2001). Clark, 1976; assumed two ecologically independent species that

experience logistic growth and the harvest rate for each species is proportionally

to both its stock level and harvesting effort. This study was extended by Mester-

tonGibbons, 1988; who discussed the optimal approach to equilibrium for such a

dynamical system. Srinivasu, et al., 2001, proposed predator-prey Holling type

model using harvesting effort as control, and showed that with harvesting it is

possible to break the cyclic behavior of system and introduced a globally stable

limit cycle in the system. Kar, et al., 2006; has studied the bioeconomic model

of a ratiodependent preypredator system with optimal harvesting. They proved

that optimal equilibrium populations leads to a situation where total users cost

of harvest per unit effort equals the discounted value of the future profit. Later,

Leard, et al., 2008; Lenzini, et al., 2009; studied the dynamics of ratio-dependent

models that include nonconstant harvesting. Kar, et al. 2010, proposed a biolog-

ical economic model based on a preypredator dynamics where prey species are

continuously harvested and predation is considered type II functional response.

Based on previous results of various authors, we investigate the dynamical

behavior of the prey, middle predator and top predator ecosystem due to the

variation of economic interest of harvesting, which was discussed in section 2.

Conditions for the boundedness, existence of non negative equilibrium, criteria

for their local stability are obtained in section 3, 4 and 5. In section 6, a combined

harvesting policy for prey, middle predator and top predator species is discussed

by using Pontryagin’s Maximum Principle. Numerical simulation is done to il-

lustrate the results in section 7. Finally, this paper ends with a conclusion which

is presented in section 8.
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2. Mathematical Model

In this section, we consider food chain model where predation is governed

by ratiodependent functional response. It is assumed that the dynamics of prey

population follows logistic growth and is subjected to a dynamic harvesting. To

maintain desired level of population, the regulatory agency imposes a tax s > 0

(negative value of s denotes subsidy) per unit biomass of the landed prey and

predators populations. In the modeling process, x(t), y(t) and z(t) denote the

densities of prey, middle predator and super predator population, respectively

at any time t in the region under consideration. E(t) represents the combined

effort applied to harvest both prey and predators population at time t. Taking

note of above, we propose a system dynamics by the set of following non-linear

differential equations:

ẋ(t) = rx
(
1− x

k

)
− c1xy

a1y + x
− q1Ex,

ẏ(t) =
m1xy

a1y + x
− d1y −

c2yz

a2z + y
− q2Ey,

ż(t) = −d2z +
m2yz

a2z + y
− q3Ez,

Ė(t) = α0E[(p1 − s)q1x+ (p2 − s)q2y + (p3 − s)q3z − c]

(1)

x(0) > 0, y(0) > 0, z(0) > 0 and E(0) > 0.

The model parameters are assuming only positive values. It is assumed that

prey population follows logistic growth with intrinsic growth rate ‘r’ and carrying

capacity ‘k’. For i = 1, 2, di,mi and ci are natural death rate of predators, fraction

of predation term that contributes in predators growth and capturing rates of

predators respectively. q1, q2 and q3 are the constant catch ability coefficients for

prey, middle predator and top predator population. p1, p2 and p3 are the fixed

price per unit of prey and both predator populations respectively, and c is the

fixed cost of harvesting population per unit of effort. The constant α0 is called

stiffness parameter measuring the strength of reaction of effort to the perceived

rent. The above assumptions are ecologically reasonable and exemplified.

3. Boundedness

In theoretical biology, boundedness of a system implies that the system is

biologically well behaved. The following theorem ensures the boundedness of the

system (1).

Theorem 3.1. All solutions of system (1) that are initiated in R4
+ are uniformly

bounded into the region B = {(x, y, z, E) : 0 ≤ x ≤ k, 0 ≤ W ≤ M
l +ϵ, for any ϵ >

0}.
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4. Equilibrium Analysis

The model system has at most four feasible boundary equilibrium points:

1. The equilibrium points E0(0, 0, 0, 0) and E1(k, 0, 0, 0) are obvious.

2. Prey population and middle predator population both can survive in

the absence of top predator populations. Hence the equilibrium point

P̄ (x̄, ȳ, 0, 0) in x− y plane exists, where x̄ and ȳ are given by

x̄ =
m1a1r − c1(m1 − d1)

m1a1r
, ȳ =

(m1 − d1
d1a1

)
x̄. (2)

It exists if m1a1r > c1(m1 − d1) > 0.

3. The positive equilibrium point P̃ (x̃, ỹ, z̃, 0) exists in the first octant, given

by

x̃ =
k(a1Ar − c1(A− 1))

a1Ar
, ỹ =

(A− 1)

a1
x̃ z̃ =

(
m2 − d2
a2d2

)
ỹ, (3a)

where A =
m1

d1 +
c2

m2a2
(m2 − d2)

.

It is found that P̃ (x̃, ỹ, z̃, 0) exist if

(i) a1Ar > c1(A− 1) > 0

(ii) m2 − d2 > 0. (3b)

4. Interior equilibrium point P ∗(x∗, y∗, z∗, E∗) of system (1) may be obtained

by solving the following algebraic equations:

r

(
1− x

k

)
− c1y

a1y + x
− q1E = 0, (4)

m1x

a1y + x
− d1 −

c2z

a2z + y
− q2E = 0, (5)

−d2 +
m2y

a2z + y
− q3E = 0, (6)

α0(p1 − s)q1x+ α0(p2 − s)q2y + α0(p3 − s)q3z − α0c = 0. (7)

Solving equation (5), we get

E =
1

q2

[
m1x

a1y + x
− d1 −

c2z

a2z + y

]
(8)

Substituting value of E in equations (4) and (6), we get

r

(
1− x

k

)
− (c1q1y + q1m1x)

q2(a1y + x)
+

q1d1
q2

− q1c2z

q2(a2z + y)
= 0 (9a)

m2q2y + q3c2z

q2(a2z + y)
+

q3d1 − d2q2
q2

− q3m1x

q2(a1y + x)
= 0. (9b)
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From equation (7), we have

y =
c− (p1 − s)q1x− (p3 − s)q3z

(p2 − s)q2
. (9c)

Solving equations (9b) and (9c), we get

f(x, z) = 0

where

f(x, z) =
m2(c− (p1 − s)q1x− (p3 − s)q3z) + q3c2z

a2(p2 − s)q2z + c− (p1 − s)q1x− (p3 − s)q3z
+

q3d1 − q2d2
q2

− q1m1(p2 − s)q2x

a1(c− (p1 − s)q1x− (p3 − s)q3z) + (p2 − s)q2x
.

(10a)

Also solving equation (9a) and (9c), we get

g(x, z) = 0

where

g(x, z) = q2r
(
1− x

k

)
− c1q1(c− (p1 − s)q1x− (p3 − s)q3z) +m1q1(p2 − s)q2x

a1(c− (p1 − s)q1x− (p3 − s)q3z) + (p2 − s)q2x

+q1d1 +
q1c2(p2 − s)q2z

a2(p2 − s)q2z + c− (p1 − s)q1x− (p3 − s)q3z
.

(10b)

From (10a), we note the following.

When z → 0, then x → xa where

xa =
{d1q3 + (m2 − d2)q2}a1c

m2(p2 − s)q2q1 + (d1q3 + (m2 − d2)q2)(a1(p1 − s)q1 − (p2 − s)q2)
(11a)

Clearly xa > 0, if a1(p1 − s)q1 > (p2 − s)q2 and inequality (3b) hold.

Also from equation (10a), we have

dx

dz
=

Q1

Q2
.

where

Q1 = (q1(p1 − s)x− c)((p2 − s)q22m2a2 − c2q3)B1 − (p3 − s)q3m1a1xB2

Q2 = (p1 − s)q1z{(p2 − s)q22m2a2 − c2q3}B1 + {c− (p3 − s)q3z}a1m1B2.

Here

B1 =
1

[a2(p2 − s)q2z + c− (p1 − s)q1x− (p3 − s)q3z]2
,

B2 =
(p2 − s)q2q1

[a1(c− (p1 − s)q1x− (p3 − s)q3z) + (p2 − s)q2x]2
.
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It is clear that dx
dz > 0, if either

(i) Q1 > 0 and Q2 > 0,

(ii) Q1 < 0 and Q2 < 0 hold. (11b)

Again from equation (10b), we note that when z → 0, then x → xb, where

xb =
−A2 ±

√
(A2

2 − 4A1A3)

2A1
, (11c)

where

A1 = r(p2 − s)q22 − a1r(p1 − s)q1q2(< 0),

A2 = {(p1 − s)q1a1 − (p2 − s)q2}k(q2r + q1d1)− q2a1rc− kq1q2m1(p2 − s)

+kc1(p1 − s)q21,

A3 = ck{a1(q2r + q1d1)− c1q1}(> 0).

Clearly A3 > 0 and A1 < 0 if a1(p1−s)q1 > (p2−s)q2 and cka1(q2r + q1d1)− c1q1
> 0 is satisfied.

We also have
dx

dz
= −

∂g
∂z
∂g
∂x

, where

∂g

∂x
= (m1a1 − c1){q1(p2 − s)q2(c+ (p3 − s)q3z}B1 + c2(p1 − s)q1zB2,

∂g

∂z
= (p2 − s)q1(p3 − s)q3q2x(m1a1 − c1)B1 + .c2{c− (p1 − s)q1x}B2 −

r

k
.

We note that dx
dz < 0, if either

(i) ∂g
∂x > 0 and ∂g

∂z > 0,

(ii) ∂g
∂x < 0 and ∂g

∂z < 0 hold. (11d)

From the above analysis we found that two isoclines (10a) and (10b) intersect

at a unique (x∗, z∗), if in addition to conditions (2), (3),(11b) and (11d), the

inequality xa < xb holds. Knowing the value of x∗ and z∗, the value of y∗ and

E∗ can be obtained as

y∗ =
c− (p1 − s)q1x

∗ − (p3 − s)q3z
∗

(p2 − s)q2
,

E∗ =
1

q2

[
m1x

∗

a1y∗ + x∗
− d1 −

c2z
∗

a2z∗ + y∗

]
.

(11e)

For x∗, y∗, z∗ and E∗ to be positive, we must have

a1(p1 − s)q1 > (p2 − s)q2, m2 > d2 and c > (p2 − s)q2y
∗ + (p3 − s)q3z

∗.
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5. Stability of Equilibrium States

5.1. Local Stability Analysis

The local stability of the equilibrium states of nonlinear model system (1) can

be analyzed by the corresponding linearized system which obtained by linearizing

the system (1) in the vicinity of equilibrium points. The nature of the eigenvalues

of the Jacobian matrix corresponding to each equilibrium points determined the

local stability of the each equilibrium. The Jacobian matrix of the system (1) is:

V (x, y, z, E) =


a11 a12 0 a14

a21 a22 a23 a24

0 a32 a33 a34

a41 a42 a43 a44

 ,

where

a11 = r

(
1− x

k

)
− c1y

a1y + x
− q1E + x

(
−r

k
+

c1y

(a1y + x)2

)
,

a12 =
−c1x

2

(a1y + x)2
, a14 = −q1x, a21 =

m1a1y
2

(a1y + x)2
,

a22 =
m1x

a1y + x
− d1 −

c2z

a2z + y
− q2E +

[
−m1a1xy

(a1y + x)2
+

c2yz

(a2z + y)2

]
,

a23 = − c2y
2

(a2z + y)2
, a24 = −q2y, a32 =

m2a2z
2

(a2z + y)2
,

a33 =

(
− d2 +

m2y

a2z + y
− q3E

)
− m2a2yz

(a2z + y)2
,

a34 = −q3z, a41 = α0(p1 − s)q1E, a42 = α0(p2 − s)q2E,

a43 = α0(p3 − s)q3E,

a44 = α0(p1 − s)q1x+ α0(p2 − s)q2y + α0(p3 − s)q3z − α0c.

Now we consider the various equilibrium states separately:

For P̄ (x̄, ȳ, 0, 0), we note that when the inequality(p1−s)q1x̄ +(p2−s)q2ȳ > c

and m2 − d2 > 0 holds, then P̄ becomes unstable in z −E plane. The other two

eigenvalue are the roots of equation

λ2 +

(
rx̄

k
+

(m1a1 − c1)x̄ȳ

(a1ȳ + x̄)2

)
λ+

m1a1r
2x̄ȳ

(a1ȳ + x̄)2k
= 0.

Since m1 > c1, thus roots of eigenvalues corresponding to x and y−directions

have negative real parts. Hence P̄ has a stable manifold in x − y plane and

unstable manifold in z − E plane.
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Further, the eigen value for P̃ (x̃, ỹ, z̃, 0) are the zeros of the polynomial

λ3 + b1λ
2 + b2λ+ b3 = 0

where

b1 =
rx̃

k
+

(m1a1 − c1)x̃ỹ

(a1ỹ + x̃)2
+

(m2a2 − c2)ỹz̃

(a2z̃ + ỹ)2
(> 0),

b2 =
a1m1a2m2x̃ỹ

2z̃ − c1ỹ
2z̃(a2m2 − c2)

(a1ỹ + x̃)2(a2z̃ + ỹ)2
+

rx̃ỹz̃(a2m2 − c2)

k(a2z̃ + ỹ)2

+
a1m1rx̃

2ỹ

k(a1ỹ + x̃)2
+

a1m1c1x̃ỹ
2(x̃− 1)

(a1ỹ + x̃)4
(> 0),

b3 =
a1m1a2m2rx̃

2ỹ2z̃

k(a1ỹ + x̃)2(a2z̃ + ỹ)2
+

a1m1a2m2c1x̃ỹ
3z̃(x̃− 1)

(a1ỹ + x̃)4(a2z̃ + ỹ)2
(> 0).

Thus, from the Routh-Hurwitz criteria, the necessary and sufficient condition for

P̃ to be asymptotically stable in x−y−z plane if b1 > 0, b3 > 0 and b1b2−b3 > 0.

But one of the eigen value in E−direction is λ = α0(p1 − s)q1x̃− α0c+ α0(p2 −
s)q2ỹ + α0(p3 − s)q3z̃, which is positive, so equilibria P̃ is always unstable in

E−direction.

Finally we investigate the local stability of interior equilibrium P ∗(x∗, y∗, z∗, E∗).

We first find the variational matrix V (P ∗) at interior equilibrium point P ∗ is

V (P ∗) =


m11 m12 0 m14

m21 m22 m23 m24

0 m32 m33 m34

m41 m42 m43 0

 ,

where

m11 = x∗
(
−r

k
+

c1y
∗

(a1y∗ + x∗)2

)
, m12 =

−c1x
∗2

(a1y∗ + x∗)2
, m14 = −q1x

∗,

m21 =
m1a1y

∗2

(a1y∗ + x∗)2
, m22 =

−m1a1x
∗y∗

(a1y∗ + x∗)2
+

c2y
∗z∗

(a2z∗ + y∗)2
, m23 = − c2y

∗2

(a2z∗ + y∗)2
,

m24 = −q2y
∗, m32 =

m2a2z
∗2

(a2z∗ + y∗)2
, m33 = − m2a2y

∗z∗

(a2z∗ + y∗)2
, m34 = −q3z

∗,

m41 = α0(p1 − s)q1E
∗, m42 = α0(p2 − s)q2E

∗, m43 = α0(p3 − s)q3E
∗.

The eigenvalues of above matrix are the roots of the characteristic polyno-

mial

λ4 +M1λ
3 +M2λ

2 +M3λ+M4 = 0 (12)
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where

M1 = −(m11 +m22 +m33),

M1 =
rx∗

k
+

(a1m1 − c1)x
∗y∗

(a1y∗ + x∗)2
+

(a2m2 − c2)y
∗z∗

(a2z∗ + y∗)2
(> 0),

M2 = m11m22 +m11m33 +m22m33 −m12m21 −m23m32 −m34m43 −m14m41

−m24m42,

M2 =
rx∗(m2a2 − c2)y

∗z∗

k(a2z∗ + y∗)2
+

ra1m1x
∗2y∗

k(a1y∗ + x∗)2
+

{m2a2(m1a1 − c1) + c1c2}x∗y∗2z∗

(a1y∗ + x∗)2(a2z∗ + y∗)2

+α0(p1 − s)q21x
∗2 + α0(p2 − s)q22y

∗2 + α0(p3 − s)q23z
∗2 (> 0),

M3 = −m12m24m41 +m11m23m32 +m12m21m33 −m11m22m33 +m11m34m43

+m22m34m43 +m14m22m41 +m14m33m41 −m14m21m42 +m11m24m42

+m24m33m42 −m23m34m42 −m24m32m43

M3 =
a2m2ra1m1x

∗2y∗2z∗

k(a1y∗ + x∗)2(a2z∗ + y∗)2
+

q23(p3 − s)x∗y∗z∗2α0(a1m1 − c1)

(a1y∗ + x∗)2

+
q21(p1 − s)x∗2y∗z∗α0(a2m2 − c2)

(a2z∗ + y∗)2
+

{q23(p3 − s)z∗2 + q22(p2 − s)y∗2}rα0x
∗

k

+
{q1(p1 − s)x∗2 + q2(p2 − s)y∗2}x∗y∗α0(a1m1q1 − c1q2)

(a1y∗ + x∗)2

+
{q2(p2 − s)y∗2 + q3(p3 − s)z∗2}y∗z∗α0(a2m2q2 − c2q3)

(a2z∗ + y∗)2
(> 0)

M4 = m12m21m34m43 −m11m22m34m43 +m12m24m33m41 −m11m24m33m42

+m11m23m34m42 −m12m23m34m41 +m14m23m32m41 −m14m22m33m41

+m14m21m33m42 −m14m21m32m43 +m11m24m32m43,

M4 =
q23(p3 − s)rα0a1m1x

∗2y∗z∗2

k(a1y∗ + x∗)2
+

q3(p3 − s)rα0x
∗y∗z∗3(a2m2q2 − c2q3)

k(a2z∗ + y∗)2

+
{q1(p1 − s)x∗2 + q3(p3 − s)z∗2 + q2(p2 − s)y∗2}α0a2m2x

∗y∗2z∗(a1m1q1 − c1q2)

(a1y∗ + x∗)2(a2z∗ + y∗)2

+
q3α0c1c2x

∗y∗2z∗{q1(p1 − s)x∗2y∗ + q3(p3 − s)z∗2}
(a1y∗ + x∗)2(a2z∗ + y∗)2

+
q22(p2 − s)rα0a2m2x

∗y∗3z∗

k(a2z∗ + y∗)2

(> 0).

Now in view of above calculation, we have following result.

Theorem 5.1. Equilibrium point P ∗(x∗, y∗, z∗, E∗) is locally asymptotically

stable if and only if

(i) a1m1q1 > c1q2, a2m2q2 > c2q3, a1m1 − c1 > 0 and a2m2 − c2 > 0.
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(ii) M4 > 0, M2 > 0, M1 > 0.

(iii) M3(M1M2 −M3) > M2
1M4.

This theorem directly follows from the Routh-Hurwitz criterion. Hence P ∗

is locally asymptotically stable.

6. Optimal Harvesting Policy

In this section, the optimal harvesting policy is discussed which plans to

maximize the total discounted net revenue from the harvesting using taxation as

control instrument.

The net economic revenue to society π(x, y, z, E, s, t) = net revenue to reg-

ulatory agency + net revenue to the harvester

π(x, y, z, E, s, t) = (p1q1x+ p2q2y + p3q3z − c)E.

Our objective is to solve the problem

max

∞∫
0

π(x, y, z, E, s, t)e−δt dt

subjected to state equations of (1) and to the control constraint

smin ≤ s ≤ smax (13a)

where δ is the instantaneous annual rate of discount. To solve above problem,

we use Pontryagins Maximum Principle. The associated Hamiltonian function is

given by

H(x, y, z, E, s, t) =

e−δt(p1q1x+ p2q2y + p3q3z − c)E + λ1(t)

[
rx

(
1− x

k

)
− c1xy

a1y + x
− q1Ex

]
+λ2(t)

[
m1xy

a1y + x
− d1y −

c2yz

a2z + y
− q2Ey

]
+ λ3(t)

[
− d2z +

m2yz

a2z + y
− q3Ez

]
+λ4(t)α0E{(p1 − s)q1x+ (p2 − s)q2y + (p3 − s)q3z − c},

where λ1, λ2, λ3 and λ4 are adjoint variables.

For H to be maximum on the control set, we must have ∂H
∂s = 0, which

implies that

λ4(t) = 0. (13b)

Now from maximum principle, we have

dλ1

dt
= −∂H

∂x
,

dλ2

dt
= −∂H

∂y
,

dλ3

dt
= −∂H

∂z
,

dλ4

dt
= −∂H

∂E
.
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From above equations and using (13b), we get

e−δt(p1q1x+ p2q2y + p3q3z − c) = λ1q1x+ λ2q2y + λ3q3z. (14a)

Now, considering interior equilibrium point P ∗, we have

dλ1

dt
= −e−δtp1q1E

∗ + λ1(t)x
∗
[
r

k
− c1y

∗

(a1y∗ + x∗)2

]
+ λ2(t)

a1m1y
∗2

(a1y∗ + x∗)2
(14b)

dλ2

dt
= −e−δtp2q2E

∗+λ1(t)

[
c1x

∗2

(a1y∗ + x∗)2

]
+λ2(t)

[
a1m1x

∗y∗

(a1y∗ + x∗)2
− c2y

∗z∗

(a2z∗ + y∗)2

]
+λ3(t)

[
m2a2z

∗2

(a2z∗ + y∗)2

]
(14c)

dλ3

dt
= −e−δtp3q3E

∗ + λ2(t)

[
c2y

∗2

(a2z∗ + y∗)2

]
+ λ3(t)

[
m2a2y

∗z∗

(a2z∗ + y∗)2

]
. (14d)

On solving equations (14b) and (14c) by using (14a), we get

d2λ1

dt2
−

(
rx∗

k
− c1x

∗y∗

(a1y∗ + x∗)2
+

m1a1x
∗y∗

(a1y∗ + x∗)2
+

(m2a2q2 − c2q3)y
∗z∗

q3(a2z∗ + y∗)2

)
dλ1

dt

−
[
m1a1c1x

∗2y∗2

(a1y∗ + x∗)4
− m1a1q1m2a2x

∗y∗2z∗

q3(a2z∗ + y∗)2(a1y∗ + x∗)2
−

(
rx∗

k
− c1x

∗y∗

(a1y∗ + x∗)2

)
.(

m1a1x
∗y∗

(a1y∗ + x∗)2
+

(m2a2q2 − c2q3)y
∗z∗

q3(a2z∗ + y∗)2

)]
λ1 = e−δtS1 (14e)

where

S1 = p1q1E
∗δ + p1q1E

∗
(

m1a1x
∗y∗

(a1y∗ + x∗)2
+

(m2a2q2 − c2q3)y
∗z∗

q3(a2z∗ + y∗)2

)
+

m1a1y
∗2

(a1y∗ + x∗)2

[
p2q2E

∗ +
m2a2z

∗(p1q1x
∗ + p2q2y

∗ + p3q3z
∗ − c)

q3(a2z∗ + y∗)2

]
.

The complete solution of (14e) is of the form

λ1(t) = A1e
−v1t +A2e

−v2t + e−δtS1

D
, (14f)

where Ai(i = 1, 2) are arbitrary constants and vi(i = 1, 2) are the roots of auxil-

lary equation and

D = δ2 +

(
rx∗

k
+

(m1a1 − c1)x
∗y∗

(a1y∗ + x∗)2
+

(m2a2q2 − c2q3)y
∗z∗

q3(a2z∗ + y∗)2

)
δ +

[
m1a1c1x

∗2y∗2

(a1y∗ + x∗)4

− m1a1q1m2a2x
∗y∗2z∗

q3(a2z∗ + y∗)2(a1y∗ + x∗)2
+

(
rx∗

k
− c1x

∗y∗

(a1y∗ + x∗)2

(
m1a1x

∗y∗

(a1y∗ + x∗)2

+
(m2a2q2 − c2q3)y

∗z∗

q3(a2z∗ + y∗)2

)]
̸= 0
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It is clear from (14d) that λ1 is bounded iff vi < 0(i = 1, 2) or Ai (i = 1, 2) are

identically zero. For the robust calculations we take Ai = 0, (i = 1, 2) and ignore

that vi < 0 (i = 1, 2). Thus we have

λ1(t) = e−δtS1

D
(15a)

λ2(t) = e−δtS2

D
, (15b)

where

S2 = δ

(
p1q1E

∗ +
m2a2z

∗(p1q1x
∗ + p2q2y

∗ + p3q3z
∗ − c)

q3(a2z∗ + y∗)2

)
− p1q1c1E

∗x∗2

(a1y∗ + x∗)2

+
m2a2p1q

2
1E

∗x∗z∗

q3(a2z∗ + y∗)2
+

(
rx∗

k
− c1x

∗y∗

(a1y∗ + x∗)2

)(
p1q1E

∗

+
m2a2z

∗(p1q1x
∗ + p2q2y

∗ + p3q3z
∗ − c)

q3(a2z∗ + y∗)2

)
.

Again solving equation (14b) and (14d) by using (14a), and proceeding in a

similar manner, we have

λ3(t) = e−δt S3

D1
(15c)

where

S3 = δ

(
p1q1E

∗ − c2y
∗(p1q1x

∗ + p2q2y
∗ + p3q3z

∗ − c)

q2(a2z∗ + y∗)2

)
−

(
rx∗

k

−(c1q2 + a1m1q1)x
∗y∗

q2(a1y∗ + x∗)2

)(
− p1q1E

∗ +
c2y

∗(p1q1x
∗ + p2q2y

∗ + p3q3z
∗ − c)

q2(a2z∗ + y∗)2

)
− q1c2x

∗y∗

q2(a2z∗ + y∗)2

(
− p1q1E

∗ − a1m1y
∗(p1q1x

∗ + p2q2y
∗ + p3q3z

∗ − c)

q2(a1y∗ + x∗)2

)
,

D1 = δ2 +

(
rx∗

k
+

(a2m2q2 − c2q3)z
∗y∗

q2(a2z∗ + y∗)2
− (a1m1q1 + c1q2)x

∗y∗

q2(a1y∗ + x∗)2

)
δ

+
a1m1q1q3c2x

∗z∗y∗2

q22(a2z
∗ + y∗)2(a1y∗ + x∗)2

+

(
rx∗

k
− (a1m1q1 + c1q2)x

∗y∗

q2(a1y∗ + x∗)2

)
(a2m2q2 − c2q3)z

∗y∗

q2(a2z∗ + y∗)2
.

Substituting the value of λ1, λ2 and λ3 into (14a), we get(
p1 −

S1

D

)
q1x

∗ +

(
p2 −

S2

D

)
q2y

∗ +

(
p3 −

S3

D1

)
q3z

∗ = c. (16a)

For an optimal effort, we have

E∗ =
1

q1

[
r

(
1− x∗

k

)
− c1y

∗

a1y∗ + x∗

]
=

1

q2

[
m1x

∗

a1y∗ + x∗
− d1 −

c2z
∗

a2z∗ + y∗

]
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=
1

q3

[
− d2 +

m2y
∗

a2z∗ + y∗

]
. (16b)

Equations (16a) and (16b) gives the optimal equilibrium levels of populations

x∗ = xδ, y∗ = yδ and z∗ = zδ

When δ → +∞, it can easily seen that(
S1

D

)
,

(
S2

D

)
,

(
S3

D1

)
→ 0

which imply

p1q1x∞ + p2q2y∞ + p3q3z∞ = c. (17)

Then the optimal equilibrium levels of effort and tax are given by

Eδ =
1

q2

[
m1xδ

a1yδ + xδ
− d1 −

c2zδ
a2zδ + yδ

]
,

sδ =
p1q1xδ + p2q2yδ + p3q3zδ − c

q1xδ + q2yδ + q3zδ
.

From the above analysis, we can observe following points:

1. λi(t)e
δt (i = 1, 2, 3, 4) remain bounded as t → ∞, hence they satisfy the

transversality condition at ∞.

2. From(14a), we have

λ1q1x+ λ2q2y + λ3q3z = e−δt ∂π

∂E

∣∣∣∣
at P ∗

Thus, at the steady state the total users cost of harvest per unit effort is

equal to the discounted value of the future price.

3. From equation (17) it can seen that p1q1x∞ + p2q2y∞ + p3q3z∞ − c → 0

when δ → +∞.

Hence, the net economic revenue is zero when discounting factor is infinitely

large.

7. Numerical Simulation

To facilitate the interpretation of our mathematical findings by numerical

simulation, we integrate system (1) using fourth order Runga-kutta method under

the following set of compatible parameters with the help of MATLAB Software

package. Consider the following set of parameter values to study system (1),

numerically.
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α0 = 1, k = 1.1, m1 = 3.5, m2 = 2.5, c1 = 3.5, c2 = 0.3, p1 = 8, p2 = 7, p3 = 6,

a2 = 1, q1 = 4, q2 = 0.52, q3 = 1, d1 = 2, d2 = 1.5, c = 11, δ = 1.5, r = 3.3,

s = 2.

For the above set of parameter values, we find that all the equilibrium point

for the system exists and given by P̄ (0.61, 0.450, 0, 0), P̃ (0.640, 0.41661, 0.27774, 0),

P ∗(0.412247, 0.24482, 0.117384, 0.18794).

It is found that all the conditions of theorem (5.1) for local stability are satis-

fied and roots of characteristic equation becomes −0.26252±86432i, −0.596829±
0.261933i, which shows that, unique positive equilibrium P ∗(x∗, y∗, z∗, E∗) is lo-

cally asymptotically stable.

Now for different values of tax(s), we have following results,

s x∗ y∗ z∗ E∗

0 0.3101285 0.1766296 0.0721595 0.2748939

1 0.3539211 0.2052380 0.0899172 0.2383907

2 0.4122472 0.2448199 0.1173836 0.1879399

4 0.6166476 0.3976784 0.2566302 0.0194603

6 1.3035510 1.0992234 1.8025071 -0.552959

From above table, we see that the harvesting effort E∗ decreases while the

corresponding level of prey x, middle predator y and top predator z population

increases as the tax s increases. There exists a value of tax (4 < s < 6) imposed by

regulatory agency, for which the equilibrium effort level becomes zero and in this

case prey-middle-top predator populations remain unexploited. Also the optimal

equilibrium level of prey-middle-top predator population, harvesting effort and

tax are obtained as

xδ = 0.45669, yδ = 0.2714601, zδ = 0.130598, Eδ = 0.18790, sδ = 2.5665.

Figures have been plotted between dependent variables and time for different

parameter values to shows changes occurring in population with time under dif-

ferent conditions. The results of numerical simulation are displayed graphically.

In figure (1) the prey, first predator top predator populations and harvesting ef-

fort are plotted against time. From figure it is noted for given initial values both

the populations tend to their corresponding value of equilibrium point P ∗ and

hence coexist in the form of steady state assuring local stability of P ∗.

From figure 2(a-d), we can depict that prey, middle predator population

and top predator population increases with the increase in s, and finally attain

their equilibrium levels. This is obvious as the tax increases harvesting effort for
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population decreases and then the population of prey, middle predator and hence

top predator population increases. For s = 4.1455 harvesting effort E become

zero.

Fig. 1. Stable behaviour of u, x, y and z

Fig. 2(a-b). Varation of prey and middle preator population with time for

different tax levels.

Fig. 2(c-d). Varation of top predator population and harvesting effort with

time for different tax levels.
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8. Conclusion

In this paper, we have considered and analyzed a ratio dependent food chain

model with Michalies-Menten type functional response, where all the species are

subjected to combined harvesting effort with tax as a control instrument to avoid

over exploitation of populations. The above situation is described by means of a

system with four non-linear differential equations.

The system is analyzed for boundedness of solutions, which is in turn, im-

plies that system is biologically well behaved. The existence conditions for equi-

librium points of the system are determined and its local stability. The stability

of the system implies that prey-middle predator and top predator population and

harvesting effort settle down to their respective equilibrium level under certain

conditions. Using Pontryagins Maximum principle, an optimal policy to harvest

food chain population with ratiodependent functional form has been discussed

and optimal equilibrium levels of prey-predator population, effort and tax have

been obtained. It has been shown that the total users cost of harvest per unit

effort is equal to the present value of marginal revenue of effort at the optimal

equilibrium level. It has also been noted that increase in discount rate decreases

the economic rent and even it may tend to zero if the discount rate tends to

infinity. All our important mathematical findings and graphical representation of

variety of solutions of system (1) are depicted by using MATLAB programming.
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