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Abstract

The aim of this paper is to evaluate multiple series summation involving H
function.
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1. Introduction

Further establish certain triple summation of hypergeometric function in
terms of another hypergeometric function. Here we have made an attempt to
show how this method can be utilized to establish multiple series summation
involving H-function in terms of another H-function.

2. Notations, Definitions and well known Results

The H-function of one variable is defined as [4]
(ap; ap)
Hy x
(BqQ bq)
_ 1/ L[1— (an) + (an)€] T [(Bm) — (bn)€] 2*dE
2mi Jp, T [(ent1,p) = (@n41,p)€] [1 = (Bmt1,g) + (brt1,9)€]
where L is the usual notation for Barne’s type contour integral. The following

(2.1)

assumptions are made.

(a) a; >0;i=1,2,..,p
b >0;1=1,2,....q

(b) All the poles of integrand are simple.

(c) O<m<gqgand O <n<p.

(d) The sequence of parameters [(5m); (bm)] and [(an); (an)] are such that
the none of the poles coincide. The path of integration is indented, if
necessary in such a way that poles of I'[(8y,) — (by)€] lie on the right and
those of I'[1 — () + (an)€] lie on the left of the imaginary axis.
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(e) The integral (2.1) converges under certain conditions which can be easily
obtained by considering the behaviour of the integrand one the closed

contour.

We consider the integral in the plane taken round the closed contour L
consisting of the imaginary axis from —¢R to +iR and that part of semi circle
|¢] = R which lies to the right of the imaginary axis, R being so chosen that the

circle always passes between the poles of the integrand.

The following notations and known results have been used to evaluate certain

expansions,
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where
Rl[c+ d —b] >0,
Ri[b—a—c] >0,
Rib—d — ] > 0.

(@)m+n = (@)pr-(a+m)N

3. Summations

Here we shall establish two general summations,

(2.6)
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3.1. Summation—I

ZZ u+v( )u+s(C*a)v+T(C*b)quT(*m)T(*n)S(b)lHﬂS’ %
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(3.1)
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Proof. The left side of (3.1), can be put in the form,

Z (d)utv(@)u(c = a)o(c = b)u(b)v(c + m + 1)uso
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u,v
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Now, using (2.4) we get
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2 (Do (2620 — 0 = D)uss(uro
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Using (2.1) we get
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Now, making use of (2.5), we get

(@) (D)m(c — a)p(c—b)y, - c—a—b+n—m,
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20c—a—-b+n—m),
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d—a—m,d—b—m,c—a+n,c—b+n

which is required result.
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3.2. Summation-II.
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Proof. Making use of the result (3.1), we established the result (3.2), if we put
d=d+p,a=a+pand b=c+p, ¢c=c+ pin the result (3.1), we get
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(e)pz”

Multiplying by > on both side, we get

(Wp(f)p
Z (d + p)utv(a + Pluts(c — a)oir(c = b)usgy %
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Now, using (2.6) and (2.1), we get
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Now, we get after summing the inner series
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which is required result.

3.3. Expansion—III
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(I—c—m-n—-u—-wv;l),(c—a—b+n;1),(1—¢l),(ap; Ap), (d + u; 1),
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(a) 0<pug,0<N <p,

P a
ZAi_ZBi_1<07
i=1 i=1
N
largz| <7 |>. Ai— >, B;
=1 i=1+p
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b P a
(b) > Ai—> Bi—1=0,
i=1 i=1
N q
largz| <m |32 Ai— 3 B
=1 i=14+p
| and |z| < 1
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