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Abstract

The present paper addresses magnetohydrodynamic (MHD) flow and heat
transfer of two immiscible, incompressible, and conductive fluids in a channel
filled with variable permeability porous layers. The flow in clear fluid region
is assumed to be governed by Navier-Stokes equation, whereas the dynamics of
porous region is determined by Darcy’s law. In the study, matching conditions
are used at the interface. The governing equations are evaluated numerically and
the results are depicted through graphs.
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1. Introduction

In the past few decades, the study of multiphase flow and heat transfer in
the porous channels is increasingly studied. This research area has large scale
potential in engineering and geophysical applications. Some major applications
are in the petroleum industry for studying the flow of hydrocarbons in reservoir
rocks; in agricultural engineering for studying surface and underground water
flows; in geotechnical engineering for studying underground waste disposal; and
in nuclear engineering for designing pebble bed reactors. Other applications
include sewage, porous bearings, solid matrix heat exchangers, and bioconvection
in porous media. Blood flow has been considered as two fluid flow by many
researchers[14][15][16].

M. Hribersek][1] investigated the influence of porous domains with relatively
high values of permeability on the flow inside a narrow channel. Tien-Chien Jen
and T.Z. Yan[2] analyzed developing fluid flow and heat transfer in a channel par-
tially filled with porous medium and developed a three dimensional model. They
found that as the porous ratio increases, the flow in the fluid layer also increases.
Flow through composite porous layers of variable permeability is investigated by
M. S. Abu Zayton[3]. They presented solutions of flow in terms of Airy’s and the
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Nield-Koznetsov function. M. Chandesni and D. Jamet[4] discussed about the
velocity boundary conditions that must be imposed at an interface between a
porous medium and a free fluid. R.A. Ford and M.H. Hamdan[5] analyzed a
fluid flow through composite porous layers by using matching conditions at the
interface. They Concluded that for low permability, an increase in permeability
results in an increase in both the velocity and shear stress at the interface. A
plain Poiseuille flow through variable permeability porous layers is analyzed by
M.H. Hamdan and M. T. Kamel[6]. They found a new dimensionless number,
H,, and said that the number might be useful in analysis of general variable
permeability media.

B. Alazami and K. Vafai[7] investigated fluid flow and heat transfer in in-
terfacial conditions between a porous medium and a fluid layer and provided a
set of correlations for interchanging the interfacial velocity, the interfacial tem-
perature and the average Nusselt number among different models. M. Sahraoui
and M. Kaviang|8] examined hydrodynamic boundary conditions at the interface
between a porous and a plain medium. Effects of porosity on MHD two fluid flow
in an inclined channel are studied by Jafar Hasnain et. al.[9]. They found that
temperature distribution decreases with the increase in the magnetic parameter
throughout the channel. M. S. Abu Zaytoon et.al.[10] investigated a flow through
a variable permeability Brinkman porous layers with quadratic permeability fun-
tion by using matching conditions at the interface. They considered the flow
in a channel having two layers out of which, one is Darcy layer and the other
Brinkman layer. They assumed that the permeability in the Darcy layer to be
an increasing linear function, and in Brinkman layer, a quadratic permeability
function. S. O. Alharbi[11] studied the problem of laminar flow through a porous
medium by introducing permeability variations in the governing flow equations.
Bal Govind Srivastava and Satya Deo[12] discussed the effects of magnetic field
on the fluid flow in a channel filled with porous medium of variable permeabil-
ity. They found that as the value of Hartmann number increases, the velocity
decreases. Variable permeability effects in binary mixtures saturating a porous
layer is studied by Z. Alloui et.al.[13]. They assumed the permeability of the
medium to vary exponentially with the depth of the layer.

2. Mathematical Formulation

Consider the flow of two electrically conducting immiscible Newtonian fluids
in a channel of height hs, partially filled with porous layers of different perme-
abilities up to height h;. The flow geometry is described if Fig. 1. Origin is at
the lower wall of the channel and X and Y are horizontal and vertical coordinates
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respectively. The Region I (0 <y < hj) is occupied by an electrically conducting
fluid of density p1, viscosity 1, electric conductivity o1 and thermal conductivity
k1. The Region I1 (h; <y < hg) is filled with an electrically conducting fluid of
density p2(< p1), viscosity pg, electric conductivity oo and thermal conductivity
ka. The lower and upper plates are held at different constant temperatures T,
and T, , respectively with T3,, > Ty, .
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FIGURE 1. Schematic diagram of Two Fluid Flow

Let us assume that the permeability of the porous region 0 < y < hy, is a
quadratic, parabolic function of y, with a value K, at y = hy and K,e at the
lower wall of the channel. Now, let

K(y) = ay® + by + ¢, (2.1)
K(0) = Ky, K(h) = K,. (2.2)

where € is a non-dimensional parameter lying in the closed interval [0, 1] and a is
arbitrary dimensionless constant.

Using conditions (2.2) in equation (2.1), we get

K,
K(y) = a(y? — hiy) + 2y + Koe (1 - L) (2.3)
hl hl
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Using the Lagrange’s necessary and sufficient conditions for maxima and minima,
Ko(1—e¢)
o ah? )
Further, if K,(1 — €) + ah} = 0, we get maximum value at y = hy and if 0 <
K,(1 —€) + ah? < ah?, then maximum value occurs in the region % <y < hy.

we find that, if ¢ < 0, maximum value of K (y) occurs at y = %(1

Assuming the flow in both regions to be one dimensional, laminar and driven
dp
dz’
velocity and temperature distributions are given by

only by a constant pressure gradient applied at the mouth of the channel,

2.1. Velocity distributions

The governing equation in Region-I is

dp d?uy 1

— - — 01B2u; = 0. 2.4
qr M a7’ K(y)m o150uy (2.4)

The governing equation in Region-11 is

dp d?us

2,
T THege 2B =0 (2:5)

Let the walls of the channel be impermeable and fixed, so that no slip con-
dition can be applied at the lower and upper permeable walls i.e.

ui(y) = 0 aty=0, (2.6)
ug(y) = 0 aty=hs.

Also, fluids in both regions are immiscible so velocity and shear stress are
continuous at the interface i.e.

ur(y) = ua(y)
w » at y = hy, 2.7
Mldcle = M2%; y=m 27)

where u; and wuo are the flow velocities in Region-I and Region- II, respectively
and B, is the magnetic field applied in the direction normal to the flow.

2.2. Temperature distribution

The governing equation in Region-I is

k1— — B =0. 2.
1 dy2 + H1 < dy ) + K(y) Uy + o1 o1 0 ( 8)
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The governing equation in Region-I17 is

d2T2 ( dUQ
ko 2

2
2.2
Tyz dy) + O'QBOUZ =0. (29)

The lower and upper walls of the channel are at constant temperatures, so
we have

Ti(y) = Tw, aty=0, (2.10)
Tg(y) = Ty, aty=hs.

Also, temperature and heat fluxes are continuous at the interface i.e.

Ti(y) = Ta(y) B
]{21% Zk‘de% aty =, (2.11)

where T and 75 are the temperatures in Region-I and Region- 11, respectively.
3. Non-dimensionalization of flow quantities

Introducing the following non-dimensional quantities

(3.1)

* __ T * __ Y * __ Ug * P
z _hz’y _hz’ui_u’p ~ pru? =19
K*( ): K(y) 0% — T;—Tw, , 0= 1,2,

y Ko’ ? Tw2_Tw1

and dropping asterisks, velocity distribution and temperature distribution in non-
dimensional form are given as

3.1. Velocity distribution

Governing equations (2.4) and (2.5), respectively, become:

d*uy 1 9 dp

G2 DRy T Mm =ty (3.2)
d2UQ 20’ RQ dp
ap M= (8:3)

The boundary and interface conditions become:
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ui(y) = 0 aty=0 (3.4)
ug(y) = 0 aty=1
dy = 7 dy

where o' = 22,y = % and p/ = % are electric conductivity ratio, viscosity ratio,

and density ratio, respectively. Ry = £ ﬁh, Ry = pi—zh are non-dimensional pa-
rameters, known as Reynold’s numbers. M = B,h, /2t is the Hartmann number.

p

3.2. Temperature distribution

Governing equations (2.8) and (2.9), respectively, becomes:

d26, duy \? 2 V2E P
TyQ + Ec-P'r‘ d7y + mECPTul + M ECPT‘ul =0 (36)
(20, dus\? | . o )
k Ty2 +u ECP'I’ (dy) +o' M ECPTUQ =0. (37)

The boundary and interface conditions become:

Ti(y) = 0 aty=0 (3.8)
Try) = 1 aty=1
T = T2y) } at y = h, (3.9)
dy dy
where K(y) = D%l(y2 —hy)+ % +€(1—#) is the permeability of the porous region
in non-dimensional form. D, = (51% is the non-dimensional parameter. Where

_ u? _ mGy I ke
E. = Co Ty —To]) P. = ™ and k' = I are Eckert number, Prandtl number

and viscosity ratio, respectively.
The number D, is a dimensionless number, depends on the channel height
ho, permeability of the upper most layer of the porous region K, and a constant

a. For maximum value of K(y), the constant a must be negative therefore D, is
D4(1—¢) )
h2 I

always negative. Also the maximum value of K (y) occurs at y = %(1 —
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which shows that the number D, determines position of maximum value (Fig.2).
When € # 1, if D, = —% then maximum value occurs at y = h (i.e. at the
top of the porous region ) and for —% < D, < 0, the maximum value occurs
in the region % <y < h. Also as D, — 0, maxima shifted towards the mid of the
porous region. When e = 1, we get maximum permeability in the mid (y = %)
of the porous region.

06l T T T T u o5l
[ W
a= 'a
a-o a-¢
o5 h=06 g 05 h=06

€=01,03050.709

D, = -03, 0.4, -0.5,-0.6, -0.7
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FIGURE 2. Permeability variation in Region I

4. Numerical results and discussions

The solution of the problem in terms of velocity and temperature distribu-
tions is obtained numerically by employing a shooting method with Runge-Kutta
method of order four having classical coefficients for various values of the pa-
rameters. The results are d/epicted graphically in Figs. 3-8. In the numerical

evaluation, we take Ry = %Rl, D, = —1.25 (For the case D, = —%), and
2

D, = —0.50 (For the case D, > —(lhfﬁ))

Figure 3(a) depict the variation in flow velocity with respect to non-dimensio-
nal constant a. The velocity decreases with an increase in a.This is due to the
fact that as a increases, D, decreases, which in turn decreases the permeability
of the porous medium. Velocity profiles with respect to Hartmann number M are
presented in Fig. 3(b). The flow velocity decreased with an increase in M. The
effect of magnetic field is more catchy at the point of peak value that is the peak
value substantially decreased with increase in magnetic field. The decrement in
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FIGURE 3. Velocity profiles for different flow parameters at M =
5,0/ =009, 4/ =008, p=09, k=09, P=-5 E.=1, P. =1,
Ry =05, h =05, ¢ = 0.8, a = —0.20 except where they are
variable.

velocity is due to the presence of magnetic field in normal direction to the flow,
which introduces Lorentz force acting against the flow. The velocity in both the
regions decreased with an increased in i/ (Fig.3(c)) because as p’ increases, fluids
become thicker. Further as p’ increased, peak velocity shifts towards the mid of
the channel. Variation in velocity profiles with respect to ¢’ are almost similar
as for y/ (Fig. 3(d)).
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FIGURE 4. Some particular cases of velocity profiles.

In absence of the magnetic field, velocity profile is depicted in Fig. 4(a). Fig.
4(b) represents the velocity profile, when M = 0 and fluids in both the regions are
same. In addition to above, when permeability of the region I tends to infinity,
velocity profile is shown in Fig. 4(c). In this case, velocity profiles resembles the
Hagen-Poiseuille flow.
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FIGURE 5. Temperature profiles for different flow parameters at
M=5 ¢ =09, =008, p =09, k=09, P=-5 E.=1,
P.=1, Ry =0.5, h=0.5, ¢ = 0.8, a = —0.20 except where they
are variable.

Figs. 5-7 depict the variations in temperature with respect to Eckert num-
ber E., thermal conductivity ratio &', Hartmann number M, viscosity ratio /,
Prandtl number P, and electric conductivity ratio o’. From Fig. 5(a), it is ob-
served that as F. increases, the temperature profile also increases. Increment in
FE. results in increment in fluid frictional effects, which enhance the temperature
of the fluids. The temperature decreases with an increase in k' (Fig.5(b)), M
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(Fig.5(c)), and p/ (Fig. 5(d)). From Fig. 6(a), it can be observed that as Pr
increases, the temperature profile also increases. Increment in P, results in incre-
ment in viscous diffusion in the presence of viscous dissipation, which enhances
internal heat generation. The temperature decreases with an increase in o’ (Fig.
6(b)). Fig. 7(a) depicts the variation in temperature profile when the fluids in the
both regions are considered to be same. In addition when M = 0, temperature
profile is presented in Fig. 7(b). Further, when porosity of the porous medium
is tending to infinity, the temperature profile is depicted in Fig. 7(c).
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FIGURE 6. Temperature profiles for different flow parameters at
M=5 ¢ =09, =008, p =09, k=09, P=-5 E.=1,
P.=1, R =05 h=0.5, = 0.8, a = —0.20 except where they
are variable.

5. Conclusion

We discussed MHD fluid flow and heat transfer of two immiscible, incom-
pressible, and conducting fluids in a channel filled with variable permeability
porous layers. The solution of the problem was obtained numerically by em-
ploying a shooting method with Runge-Kutta method of order 4 having classical
coefficients. The effects of flow parameters on the flow velocity and temperature
variations are depicted through graphs. The following conclusions can be drawn
from the entire analysis:

o If D, = —1h—_26 then maximum value of the permeability occurs at top of

the channel and for —1h—_25 < D,y < 0, the maximum value occurs at some
middle point in the porous region.
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e The velocity profile is decreasing function of dimensionless constant a and
e As viscosity ratio and electric conductivity ratio decrease, the velocity

e The temperature profile is an increasing function of Eckert number and
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Hartmann number.

profile increases.

Prandtl number, whereas it behaves like decreasing function of thermal

and electric conductivity ratios.
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FIGURE 7. Some particular cases of temperature profiles.
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