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Abstract

The present paper addresses magnetohydrodynamic (MHD) flow and heat

transfer of two immiscible, incompressible, and conductive fluids in a channel

filled with variable permeability porous layers. The flow in clear fluid region

is assumed to be governed by Navier-Stokes equation, whereas the dynamics of

porous region is determined by Darcy’s law. In the study, matching conditions

are used at the interface. The governing equations are evaluated numerically and

the results are depicted through graphs.
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1. Introduction

In the past few decades, the study of multiphase flow and heat transfer in

the porous channels is increasingly studied. This research area has large scale

potential in engineering and geophysical applications. Some major applications

are in the petroleum industry for studying the flow of hydrocarbons in reservoir

rocks; in agricultural engineering for studying surface and underground water

flows; in geotechnical engineering for studying underground waste disposal; and

in nuclear engineering for designing pebble bed reactors. Other applications

include sewage, porous bearings, solid matrix heat exchangers, and bioconvection

in porous media. Blood flow has been considered as two fluid flow by many

researchers[14][15][16].

M. Hribersek[1] investigated the influence of porous domains with relatively

high values of permeability on the flow inside a narrow channel. Tien-Chien Jen

and T.Z. Yan[2] analyzed developing fluid flow and heat transfer in a channel par-

tially filled with porous medium and developed a three dimensional model. They

found that as the porous ratio increases, the flow in the fluid layer also increases.

Flow through composite porous layers of variable permeability is investigated by

M. S. Abu Zayton[3]. They presented solutions of flow in terms of Airy’s and the
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Nield-Koznetsov function. M. Chandesni and D. Jamet[4] discussed about the

velocity boundary conditions that must be imposed at an interface between a

porous medium and a free fluid. R.A. Ford and M.H. Hamdan[5] analyzed a

fluid flow through composite porous layers by using matching conditions at the

interface. They Concluded that for low permability, an increase in permeability

results in an increase in both the velocity and shear stress at the interface. A

plain Poiseuille flow through variable permeability porous layers is analyzed by

M.H. Hamdan and M. T. Kamel[6]. They found a new dimensionless number,

Ha, and said that the number might be useful in analysis of general variable

permeability media.

B. Alazami and K. Vafai[7] investigated fluid flow and heat transfer in in-

terfacial conditions between a porous medium and a fluid layer and provided a

set of correlations for interchanging the interfacial velocity, the interfacial tem-

perature and the average Nusselt number among different models. M. Sahraoui

and M. Kaviang[8] examined hydrodynamic boundary conditions at the interface

between a porous and a plain medium. Effects of porosity on MHD two fluid flow

in an inclined channel are studied by Jafar Hasnain et. al.[9]. They found that

temperature distribution decreases with the increase in the magnetic parameter

throughout the channel. M. S. Abu Zaytoon et.al.[10] investigated a flow through

a variable permeability Brinkman porous layers with quadratic permeability fun-

tion by using matching conditions at the interface. They considered the flow

in a channel having two layers out of which, one is Darcy layer and the other

Brinkman layer. They assumed that the permeability in the Darcy layer to be

an increasing linear function, and in Brinkman layer, a quadratic permeability

function. S. O. Alharbi[11] studied the problem of laminar flow through a porous

medium by introducing permeability variations in the governing flow equations.

Bal Govind Srivastava and Satya Deo[12] discussed the effects of magnetic field

on the fluid flow in a channel filled with porous medium of variable permeabil-

ity. They found that as the value of Hartmann number increases, the velocity

decreases. Variable permeability effects in binary mixtures saturating a porous

layer is studied by Z. Alloui et.al.[13]. They assumed the permeability of the

medium to vary exponentially with the depth of the layer.

2. Mathematical Formulation

Consider the flow of two electrically conducting immiscible Newtonian fluids

in a channel of height h2, partially filled with porous layers of different perme-

abilities up to height h1. The flow geometry is described if Fig. 1. Origin is at

the lower wall of the channel and X and Y are horizontal and vertical coordinates
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respectively. The Region I (0 ≤ y ≤ h1) is occupied by an electrically conducting

fluid of density ρ1, viscosity µ1, electric conductivity σ1 and thermal conductivity

k1. The Region II (h1 ≤ y ≤ h2) is filled with an electrically conducting fluid of

density ρ2(< ρ1), viscosity µ2, electric conductivity σ2 and thermal conductivity

k2. The lower and upper plates are held at different constant temperatures Tw1

and Tw2 , respectively with Tw2 > Tw1 .

Figure 1. Schematic diagram of Two Fluid Flow

Let us assume that the permeability of the porous region 0 ≤ y ≤ h1, is a

quadratic, parabolic function of y, with a value Ko at y = h1 and Koϵ at the

lower wall of the channel. Now, let

K(y) = ay2 + by + c, (2.1)

K(0) = Koϵ, K(h1) = Ko. (2.2)

where ϵ is a non-dimensional parameter lying in the closed interval [0, 1] and a is

arbitrary dimensionless constant.

Using conditions (2.2) in equation (2.1), we get

K(y) = a(y2 − h1y) +
Ko

h1
y +Koϵ

(
1− y

h1

)
. (2.3)
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Using the Lagrange’s necessary and sufficient conditions for maxima and minima,

we find that, if a < 0, maximum value of K(y) occurs at y = h1
2 (1 − Ko(1−ϵ)

ah2
1

).

Further, if Ko(1 − ϵ) + ah21 = 0, we get maximum value at y = h1 and if 0 <

Ko(1− ϵ) + ah21 < ah21, then maximum value occurs in the region h1
2 < y < h1.

Assuming the flow in both regions to be one dimensional, laminar and driven

only by a constant pressure gradient dp
dx , applied at the mouth of the channel,

velocity and temperature distributions are given by

2.1. Velocity distributions

The governing equation in Region-I is

− dp

dx
+ µ1

d2u1
dy2

− µ1

K(y)
u1 − σ1B

2
0u1 = 0. (2.4)

The governing equation in Region-II is

− dp

dx
+ µ2

d2u2
dy2

− σ2B
2
0u2 = 0. (2.5)

Let the walls of the channel be impermeable and fixed, so that no slip con-

dition can be applied at the lower and upper permeable walls i.e.

u1(y) = 0 at y = 0, (2.6)

u2(y) = 0 at y = h2.

Also, fluids in both regions are immiscible so velocity and shear stress are

continuous at the interface i.e.

u1(y) = u2(y)

µ1
du1
dy = µ2

du2
dy

}
at y = h1, (2.7)

where u1 and u2 are the flow velocities in Region-I and Region- II, respectively

and Bo is the magnetic field applied in the direction normal to the flow.

2.2. Temperature distribution

The governing equation in Region-I is

k1
d2T1

dy2
+ µ1

(
du1
dy

)2

+
µ1

K(y)
u21 + σ1B

2
ou

2
1 = 0. (2.8)
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The governing equation in Region-II is

k2
d2T2

dy2
+ µ2

(
du2
dy

)2

+ σ2B
2
ou

2
2 = 0. (2.9)

The lower and upper walls of the channel are at constant temperatures, so

we have

T1(y) = Tw1 at y = 0, (2.10)

T2(y) = Tw2 at y = h2.

Also, temperature and heat fluxes are continuous at the interface i.e.

T1(y) = T2(y)

k1
dT1
dy = k2

dT2
dy

}
at y = h1, (2.11)

where T1 and T2 are the temperatures in Region-I and Region- II, respectively.

3. Non-dimensionalization of flow quantities

Introducing the following non-dimensional quantities

x∗ = x
h2
, y∗ = y

h2
, u∗i =

ui
u , p

∗ = p
ρ1u2

K∗(y) = K(y)
Ko

, θ∗i =
Ti−Tw1
Tw2−Tw1

}
, i = 1, 2, (3.1)

and dropping asterisks, velocity distribution and temperature distribution in non-

dimensional form are given as

3.1. Velocity distribution

Governing equations (2.4) and (2.5), respectively, become:

d2u1
dy2

− 1

aDaK(y)
u1 −M2u1 = R1

dp

dx
(3.2)

d2u2
dy2

−M2σ
′

µ′u2 =
R2

ρ′
dp

dx
. (3.3)

The boundary and interface conditions become:



6 Manju Agarwal, Deepak Kmuar and V. S. Verma

u1(y) = 0 at y = 0 (3.4)

u2(y) = 0 at y = 1

u1(y) = u2(y)
du1
dy = µ

′ du2
dy

}
at y = h, (3.5)

where σ′ = σ2
σ1
, µ′ = µ2

µ1
and ρ′ = ρ2

ρ1
are electric conductivity ratio, viscosity ratio,

and density ratio, respectively. R1 = ρ1uh
µ1

, R2 = ρ2uh
µ2

are non-dimensional pa-

rameters, known as Reynold’s numbers. M = Boh
√

σ1
µ1

is the Hartmann number.

3.2. Temperature distribution

Governing equations (2.8) and (2.9), respectively, becomes:

d2θ1
dy2

+ EcPr

(
du1
dy

)2

+
1

aDaK(y)
EcPru

2
1 +M2EcPru

2
1 = 0 (3.6)

k′
d2θ2
dy2

+ µ′EcPr

(
du2
dy

)2

+ σ′M2EcPru
2
2 = 0. (3.7)

The boundary and interface conditions become:

T1(y) = 0 at y = 0 (3.8)

T2(y) = 1 at y = 1

T1(y) = T2(y)
dT1
dy = k′ dT2

dy

}
at y = h, (3.9)

where K(y) = 1
Da

(y2−hy)+ y
h + ϵ(1− y

h) is the permeability of the porous region

in non-dimensional form. Da = Ko

ah2
2
is the non-dimensional parameter. Where

Ec = u2

Cp(Tw2−Tw1 )
, Pr =

µ1Cp

k1
and k′ = k2

k1
are Eckert number, Prandtl number

and viscosity ratio, respectively.

The number Da is a dimensionless number, depends on the channel height

h2, permeability of the upper most layer of the porous region Ko and a constant

a. For maximum value of K(y), the constant a must be negative therefore Da is

always negative. Also the maximum value of K(y) occurs at y = h
2 (1−

Da(1−ε)
h2 ),
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which shows that the number Da determines position of maximum value (Fig.2).

When ϵ ̸= 1, if Da = − h2

(1−ϵ) then maximum value occurs at y = h (i.e. at the

top of the porous region ) and for − h2

(1−ϵ) < Da < 0, the maximum value occurs

in the region h
2 < y < h. Also as Da → 0, maxima shifted towards the mid of the

porous region. When ϵ = 1, we get maximum permeability in the mid (y = h1
2 )

of the porous region.
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Figure 2. Permeability variation in Region I

4. Numerical results and discussions

The solution of the problem in terms of velocity and temperature distribu-

tions is obtained numerically by employing a shooting method with Runge-Kutta

method of order four having classical coefficients for various values of the pa-

rameters. The results are depicted graphically in Figs. 3–8. In the numerical

evaluation, we take R2 = ρ′

µ′R1, Da = −1.25 (For the case Da = − h2

(1−ϵ)), and

Da = −0.50 (For the case Da > − h2

(1−ϵ)).

Figure 3(a) depict the variation in flow velocity with respect to non-dimensio-

nal constant a. The velocity decreases with an increase in a.This is due to the

fact that as a increases, Da decreases, which in turn decreases the permeability

of the porous medium. Velocity profiles with respect to Hartmann number M are

presented in Fig. 3(b). The flow velocity decreased with an increase in M . The

effect of magnetic field is more catchy at the point of peak value that is the peak

value substantially decreased with increase in magnetic field. The decrement in
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Figure 3. Velocity profiles for different flow parameters at M =

5, σ′ = 0.9, µ′ = 00.8, ρ′ = 0.9, k′ = 0.9, P = −5, Ec = 1, Pr = 1,

R1 = 0.5, h = 0.5, ϵ = 0.8, a = −0.20 except where they are

variable.

velocity is due to the presence of magnetic field in normal direction to the flow,

which introduces Lorentz force acting against the flow. The velocity in both the

regions decreased with an increased in µ′ (Fig.3(c)) because as µ′ increases, fluids

become thicker. Further as µ′ increased, peak velocity shifts towards the mid of

the channel. Variation in velocity profiles with respect to σ′ are almost similar

as for µ′ (Fig. 3(d)).
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(b) Velocity profile for same fluids at
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(c) Velocity profile for same fluids at

M = 0 and K(y) → ∞.

Figure 4. Some particular cases of velocity profiles.

In absence of the magnetic field, velocity profile is depicted in Fig. 4(a). Fig.

4(b) represents the velocity profile, when M = 0 and fluids in both the regions are

same. In addition to above, when permeability of the region I tends to infinity,

velocity profile is shown in Fig. 4(c). In this case, velocity profiles resembles the

Hagen-Poiseuille flow.
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Figure 5. Temperature profiles for different flow parameters at

M = 5, σ′ = 0.9, µ′ = 00.8, ρ′ = 0.9, k′ = 0.9, P = −5, Ec = 1,

Pr = 1, R1 = 0.5, h = 0.5, ϵ = 0.8, a = −0.20 except where they

are variable.

Figs. 5–7 depict the variations in temperature with respect to Eckert num-

ber Ec, thermal conductivity ratio k′, Hartmann number M , viscosity ratio µ′,

Prandtl number Pr and electric conductivity ratio σ′. From Fig. 5(a), it is ob-

served that as Ec increases, the temperature profile also increases. Increment in

Ec results in increment in fluid frictional effects, which enhance the temperature

of the fluids. The temperature decreases with an increase in k′ (Fig.5(b)), M
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(Fig.5(c)), and µ′ (Fig. 5(d)). From Fig. 6(a), it can be observed that as Pr

increases, the temperature profile also increases. Increment in Pr results in incre-

ment in viscous diffusion in the presence of viscous dissipation, which enhances

internal heat generation. The temperature decreases with an increase in σ′ (Fig.

6(b)). Fig. 7(a) depicts the variation in temperature profile when the fluids in the

both regions are considered to be same. In addition when M = 0, temperature

profile is presented in Fig. 7(b). Further, when porosity of the porous medium

is tending to infinity, the temperature profile is depicted in Fig. 7(c).
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Figure 6. Temperature profiles for different flow parameters at

M = 5, σ′ = 0.9, µ′ = 00.8, ρ′ = 0.9, k′ = 0.9, P = −5, Ec = 1,

Pr = 1, R1 = 0.5, h = 0.5, ϵ = 0.8, a = −0.20 except where they

are variable.

5. Conclusion

We discussed MHD fluid flow and heat transfer of two immiscible, incom-

pressible, and conducting fluids in a channel filled with variable permeability

porous layers. The solution of the problem was obtained numerically by em-

ploying a shooting method with Runge-Kutta method of order 4 having classical

coefficients. The effects of flow parameters on the flow velocity and temperature

variations are depicted through graphs. The following conclusions can be drawn

from the entire analysis:

• If Da = − h2

1−ϵ then maximum value of the permeability occurs at top of

the channel and for − h2

1−ϵ < Da < 0, the maximum value occurs at some

middle point in the porous region.
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• The velocity profile is decreasing function of dimensionless constant a and

Hartmann number.

• As viscosity ratio and electric conductivity ratio decrease, the velocity

profile increases.

• The temperature profile is an increasing function of Eckert number and

Prandtl number, whereas it behaves like decreasing function of thermal

and electric conductivity ratios.
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(a) Temperature profile for same fluids.
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(b) Temperature profile for same fluids

at M = 0
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Figure 7. Some particular cases of temperature profiles.
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