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Abstract

Symmetric spaces and weakly symmetric spaces had studied by a large num-

ber of authors such as Chaki and Gupta [1], Desai and Amur [2] Tamassay and

Binh [11] and Singh and Khan [8] etc. Recently, Singh and Khan [9] introduced

and studied the notion of a Special Weakly Symmetric Riemannian manifolds and

denoted such manifold by (SWS)n. In this paper, we have studied some proper-

ties of a special weekly specially symmetric Riemannian manifold (SWSS)n and

have investigated some interesting and fruitful results on it.
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1. Introduction

Let (Mn,g) be a Riemannian manifold of dimension n with a Riemannian

metric g and χ(M) denote the set of differentiable vector fields on Mn. Let

K(X,Y, Z) be the Riemannian curvature tensor of type (1,3) for X,Y, Z ∈ χ(M).

A non - flat Riemannian manifold (Mn, g), (n ≥ 2) is called a special weakly

symmetric Riemannian manifold [9], if its curvature tensor K of type (1, 3)

satisfies the condition.

(∇XK)(Y, Z, V ) =2α(X)K(Y, Z, V ) + α(Y )K(X,Z, V )

+ α(Z)K(Y,X, V ) + α(V )K(Y, Z,X)
(1.1)

where α is a 1-form and is defined as

α(X) = g(X, ρ), (1.2)

for every vector field X and ∇ denotes the operator of covariant differentiation

with respect to the metric g. Such a manifold is denoted by (SWS)n. If we

replace K by J in (1.1), then it reduces to

(∇XJ)(Y, Z, V ) =2α(X)J(Y, Z, V ) + α(Y )J(X,Z, V )

+α(Z)J(Y,X, V ) + α(V )J(Y, Z,X),
(1.3)
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where J is the special curvature tensor defined by (see in [4][10])

J(X,Y, Z) = K(X,Y, Z) +K(X,Z, Y ) (1.4)

which satisfies the following properties.

J(X,Y, Z) = J(X,Z, Y ) (1.5)

and

J(X,Y, Z) + J(Y, Z,X) + J(Z,X, Y ) = 0. (1.6)

Such an n-dimensional Riemannian manifold shall be called a special weakly

specially symmetric Riemannian manifold and such a manifold is denoted by

(SWSS)n.

A Riemannian manifold is recurrent [10] if

(∇XK)(Y, Z, V ) = α(X)K(Y, Z, V ) (1.7)

where α(X) is a recurrent parameter.

The above results will be used in the next section.

2. Existence of a (SWSS)n

Let(Mn, g) be a (SWS)n. Taking covariant derivative of (1.4) with respect

to X and then using (1.1), we get

(∇XJ)(Y, Z, V ) =2α(X)K(Y, Z, V ) + α(Y )K(X,Z, V ) + α(Z)K(Y,X, V )

+ α(V )K(Y, Z,X) + 2α(X)K(Y, V, Z)

+ α(Y )K(X,V, Z) + α(V )K(Y,X,Z) + α(Z)K(Y, V,X)

=2α(X)[K(Y, Z, V ) +K(Y, V, Z)] + α(Y )[K(X,Z, V )

+K(X,V, Z)] + α(Z)[K(Y,X, V ) +K(Y, V,X)]

+ α(V )[K(Y, Z,X) +K(Y,X,Z)].

(2.1)

Using (1.4) in (2.1), we have

(∇XJ)(Y, Z, V ) =2α(X)J(Y, Z, V ) + α(Y )J(X,Z, V )

+α(Z)J(Y,X,Z) + α(V )J(Y, Z,X)

This leads us to the following:

Theorem 1. A (SWS)n, is necessarily (SWSS)n.
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Let (Mn,g) be (SWSS)n. Taking covariant derivative of (1.4) with respect

to X and then using (1.3), we have

2α(X)J(Y, Z, V ) + α(Y )J(X,Z, V ) + α(Z)J(Y,X, V ) + α(V )J(Y, Z,X)

= (∇XK)(Y, Z, V ) + (∇XK)(Y, V, Z)

which in view of (1.4) gives

(∇XK)(Y, Z, V ) + (∇XK)(Y, V, Z) = 2α(X)[K(Y, Z, V ) +K(Y, V, Z)]

+α(Y )[K(X,Z, V ) +K(X,V, Z)]

+α(Z)[K(Y,X, V ) +K(Y, V,X)]

+α(V )[K(Y, Z,X) +K(Y,X,Z)]

(2.2)

Permuting equation (2.2) twice with respect to X,Y, Z; adding the three ob-

tained equations and then using Bianchi’s first and second identities and; Skew

symmetric property of curvature tensor, we have

(∇XK)(Y, V, Z)+(∇Y K)(Z, V,X) + (∇ZK)(X,V, Y )

=2[α(X){K(Y, V, Z) +K(Z, V, Y )}
+α(Y ){K(Z, V,X) +K(X,V, Z)}
+α(Z){K(X,V, Y ) +K(Y, V,X)}]

(2.3)

which in view of (1.7) gives

2α(X)K(Y, V, Z) + α(Y )K(Z, V,X) + α(Z)K(X,V, Y )

= 2[α(X)K(Z, V, Y ) + α(Y )K(X,V, Z) + α(Z)K(Y, V,X)].
(2.4)

Contracting (2.4) with respect to X and using the fact (C1
1K)

Ric(Y, Z), (C1
3K)=0 and

α(K(Y, V, Z)) = Ḱ(Y, V, Z, ρ),

we have

Ḱ(Y, V, Z, ρ) + α(Z)Ric(V, Y ) = 2[Ḱ(Z, V, Y, ρ) + α(Y )Ric(V, Z)]

which in view of

Ḱ(X,Y, Z, V ) + Ḱ(Z, V,X, Y ) and Ric(X,Y ) = Ric(Y,X)

gives

Ḱ(Z, ρ, Y, V ) + α(Z)Ric(Y, V ) = 2[Ḱ(Y, ρ, Z, V ) + α(Y )Ric(Z, V )] (2.5)

Factoring off V in (2.5), we have

K(Z, ρ, Y ) + α(Z)R(Y ) = 2[K(Y, ρ, Z) + α(Y )R(Z)]
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which on contraction with respect to Z gives

Ric(ρ, Y ) +Ric(Y, ρ) = 2α(Y )r

which in view of Ric(X,Y ) = Ric(Y,X) gives

Ric(Y, ρ) = α(Y )r

which in view of g(X,ρ) = α(X) gives

α(R, Y ) = α(Y )r

Thus, we have the following result.

Theorem 2. In (SWSS)n, the scalar curvature r is related as

α(Y )r = α(R(Y )) for recurrent manifold.

Taking Covariant derivative of (1.4) with respect to X, we have

(∇XJ)(Y, Z, V ) = (∇XK)(Y, Z, V ) + (∇XK)(Y, V, Z)

Taking Cyclic sum of the above relation and using Bianchi’s second identity, we

have
(∇XJ)(Y, Z, V ) + (∇Y J)(Z,X, V ) + (∇ZJ)(X,Y, V )

= (∇XK)(Y, V, Z) + (∇Y K)(Z, V,X) + (∇ZK)(X,V, Y )
(2.6)

Let (Mn,g) is (SWSS)n. Then in view of (1.3) and (1.4), The relation (2.6)

reduces to

2α(X)[K(Y, Z, V ) +K(Y, V, Z)] + α(Y )[K(X,Z, V ) +K(X,V, Z)]

+ α(Z)[K(Y,X, V ) +K(Y, V,X)] + α(V )[K(Y, Z,X) +K(Y,X,Z)]

+ 2α(Y )[K(Z,X, V ) +K(Z, V,X)] + α(Z)[K(Y,X, V ) +K(Y, V,X)]

+ α(X)[K(Z, Y, V ) +K(Z, V, Y )] + α(V )[K(Z,X, Y ) +K(Z, Y,X)]

+ 2α(Z)[K(X,Y, V ) +K(X,V, Y )] + α(X)[K(Z, Y, V ) +K(Z, V, Y )]

+ α(Y )[K(X,Z, V ) +K(X,V, Z)] + α(V )[K(X,Y, Z) +K(X,Z, Y )]

= (∇XK)(Y, V, Z) + (∇Y K)(Z, V,X) + (∇ZK)(X,V, Y ).

(2.7)

Using (1.7) in (2.7) and using Bianchi’s first identity and skew symmetric property

of K(X,Y,Z), we have

α(X)[K(Y, V, Z) + 2K(Z, V, Y )]+α(Y )[K(Z, V,X) + 2K(X,V, Z)]

+α(Z)[K(X,V, Y ) + 2K(Y, V,X)] = 0.
(2.8)

Contracting (2.8) with respect to X and using (C1
1K) = Ric(Y,Z), (C1

3K)=0 and

α(K(Y, Z, V )) = Ḱ(Y, Z, V, ρ),
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we have

Ḱ(Y, V, Z, ρ) + 2Ḱ(Z, V, Y, ρ) + 2α(Y )Ric(V, Z) + α(Z)Ric(V, Y ) = 0

which in view of

Ḱ(X,Y, Z, V ) = Ḱ(Z, V,X, Y )

gives

Ḱ(Z, ρ, Y, V ) + 2Ḱ(Y, ρ, Z, V ) + 2α(Y )g(R(Z), V ) + α(Z)g(R(Y ), V ) = 0 (2.9)

Factoring off V in (2.9), we have

K(Z, ρ, Y ) + 2K(Y, ρ, Z) + 2α(Y )R(Z) + α(Z)R(Y ) = 0

which on contracting with respect to Z gives

Ric(ρ, Y ) + 2α(Y )r +Ric(Y, ρ) = 0

or Ric(Y, ρ) + α(Y )r = 0
(2.10)

This leads us to the following result.

Theorem 3. In (SWSS)n, the scalar curvature r and Ricci tensor of type (0,2)

is related as (2.10), for recurrent manifold.
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