J. Nat. Acad. Math.Vol. 34 (2020), pp.15-20

ISSN 0970-5228

Study On Special Weakly Symmetric Manifolds

By

Azizullah Khan¹ and Quddus Khan²

Abstract

Symmetric spaces and weakly symmetric spaces had studied by a large number of authors such as Chaki and Gupta [1], Desai and Amur [2] Tamassay and Binh [11] and Singh and Khan [8] etc. Recently, Singh and Khan [9] introduced and studied the notion of a Special Weakly Symmetric Riemannian manifolds and denoted such manifold by $(SWS)_n$. In this paper, we have studied some properties of a special weekly specially symmetric Riemannian manifold $(SWSS)_n$ and have investigated some interesting and fruitful results on it.

Keywords and Phrases : Special weakly symmetric Riemannian manifold, special curvature tensor, recurrent manifold, symmetric space.

AMS Mathematics Subject Classification: 53C21, 53C25.

1. Introduction

Let (M^n,g) be a Riemannian manifold of dimension n with a Riemannian metric g and $\chi(M)$ denote the set of differentiable vector fields on M^n . Let K(X,Y,Z) be the Riemannian curvature tensor of type (1,3) for $X, Y, Z \in \chi(M)$. A non - flat Riemannian manifold (M^n, g) , $(n \ge 2)$ is called a special weakly symmetric Riemannian manifold [9], if its curvature tensor K of type (1, 3) satisfies the condition.

$$(\nabla_X K)(Y, Z, V) = 2\alpha(X)K(Y, Z, V) + \alpha(Y)K(X, Z, V) + \alpha(Z)K(Y, X, V) + \alpha(V)K(Y, Z, X)$$
(1.1)

where α is a 1-form and is defined as

$$\alpha(X) = g(X, \rho), \tag{1.2}$$

for every vector field X and ∇ denotes the operator of covariant differentiation with respect to the metric g. Such a manifold is denoted by $(SWS)_n$. If we replace K by J in (1.1), then it reduces to

$$(\nabla_X J)(Y, Z, V) = 2\alpha(X)J(Y, Z, V) + \alpha(Y)J(X, Z, V) + \alpha(Z)J(Y, X, V) + \alpha(V)J(Y, Z, X),$$
(1.3)

Received : April 9, 2020; Accepted : October 19, 2020

Azizullah Khan and Quddus Khan

where J is the special curvature tensor defined by (see in [4][10])

$$J(X, Y, Z) = K(X, Y, Z) + K(X, Z, Y)$$
(1.4)

which satisfies the following properties.

$$J(X, Y, Z) = J(X, Z, Y)$$

$$(1.5)$$

and

$$J(X, Y, Z) + J(Y, Z, X) + J(Z, X, Y) = 0.$$
(1.6)

Such an *n*-dimensional Riemannian manifold shall be called a special weakly specially symmetric Riemannian manifold and such a manifold is denoted by $(SWSS)_n$.

A Riemannian manifold is recurrent [10] if

$$(\nabla_X K)(Y, Z, V) = \alpha(X)K(Y, Z, V) \tag{1.7}$$

where $\alpha(X)$ is a recurrent parameter.

The above results will be used in the next section.

2. Existence of a $(SWSS)_n$

Let (M^n, g) be a $(SWS)_n$. Taking covariant derivative of (1.4) with respect to X and then using (1.1), we get

$$\begin{aligned} (\nabla_X J)(Y, Z, V) &= 2\alpha(X)K(Y, Z, V) + \alpha(Y)K(X, Z, V) + \alpha(Z)K(Y, X, V) \\ &+ \alpha(V)K(Y, Z, X) + 2\alpha(X)K(Y, V, Z) \\ &+ \alpha(Y)K(X, V, Z) + \alpha(V)K(Y, X, Z) + \alpha(Z)K(Y, V, X) \\ &= 2\alpha(X)[K(Y, Z, V) + K(Y, V, Z)] + \alpha(Y)[K(X, Z, V) \\ &+ K(X, V, Z)] + \alpha(Z)[K(Y, X, V) + K(Y, V, X)] \\ &+ \alpha(V)[K(Y, Z, X) + K(Y, X, Z)]. \end{aligned}$$
(2.1)

Using (1.4) in (2.1), we have

$$(\nabla_X J)(Y, Z, V) = 2\alpha(X)J(Y, Z, V) + \alpha(Y)J(X, Z, V) + \alpha(Z)J(Y, X, Z) + \alpha(V)J(Y, Z, X)$$

This leads us to the following:

Theorem 1. A $(SWS)_n$, is necessarily $(SWSS)_n$.

Let (M^n,g) be $(SWSS)_n$. Taking covariant derivative of (1.4) with respect to X and then using (1.3), we have

$$2\alpha(X)J(Y,Z,V) + \alpha(Y)J(X,Z,V) + \alpha(Z)J(Y,X,V) + \alpha(V)J(Y,Z,X)$$
$$= (\nabla_X K)(Y,Z,V) + (\nabla_X K)(Y,V,Z)$$

which in view of (1.4) gives

$$(\nabla_X K)(Y, Z, V) + (\nabla_X K)(Y, V, Z) = 2\alpha(X)[K(Y, Z, V) + K(Y, V, Z)] + \alpha(Y)[K(X, Z, V) + K(X, V, Z)] + \alpha(Z)[K(Y, X, V) + K(Y, V, X)] + \alpha(V)[K(Y, Z, X) + K(Y, X, Z)]$$
(2.2)

Permuting equation (2.2) twice with respect to X, Y, Z; adding the three obtained equations and then using Bianchi's first and second identities and; Skew symmetric property of curvature tensor, we have

$$\begin{aligned} (\nabla_X K)(Y, V, Z) + (\nabla_Y K)(Z, V, X) + (\nabla_Z K)(X, V, Y) \\ &= 2[\alpha(X)\{K(Y, V, Z) + K(Z, V, Y)\} \\ &+ \alpha(Y)\{K(Z, V, X) + K(X, V, Z)\} \\ &+ \alpha(Z)\{K(X, V, Y) + K(Y, V, X)\}] \end{aligned}$$
(2.3)

which in view of (1.7) gives

$$2\alpha(X)K(Y,V,Z) + \alpha(Y)K(Z,V,X) + \alpha(Z)K(X,V,Y)$$

= 2[\alpha(X)K(Z,V,Y) + \alpha(Y)K(X,V,Z) + \alpha(Z)K(Y,V,X)]. (2.4)

Contracting (2.4) with respect to X and using the fact (C_1^1K)

$$Ric(Y, Z), (C_3^1K)=0$$
 and

$$\alpha(K(Y,V,Z)) = \acute{K}(Y,V,Z,\rho),$$

we have

$$\acute{K}(Y,V,Z,\rho) + \alpha(Z)Ric(V,Y) = 2[\acute{K}(Z,V,Y,\rho) + \alpha(Y)Ric(V,Z)]$$

which in view of

$$\dot{K}(X,Y,Z,V) + \dot{K}(Z,V,X,Y)$$
 and $Ric(X,Y) = Ric(Y,X)$

gives

$$\acute{K}(Z,\rho,Y,V) + \alpha(Z)Ric(Y,V) = 2[\acute{K}(Y,\rho,Z,V) + \alpha(Y)Ric(Z,V)]$$
(2.5)

Factoring off V in (2.5), we have

$$K(Z, \rho, Y) + \alpha(Z)R(Y) = 2[K(Y, \rho, Z) + \alpha(Y)R(Z)]$$

which on contraction with respect to Z gives

$$Ric(\rho, Y) + Ric(Y, \rho) = 2\alpha(Y)r$$

which in view of Ric(X, Y) = Ric(Y, X) gives

$$Ric(Y,\rho) = \alpha(Y)r$$

which in view of $g(X,\rho) = \alpha(X)$ gives

$$\alpha(R,Y) = \alpha(Y)r$$

Thus, we have the following result.

Theorem 2. In $(SWSS)_n$, the scalar curvature r is related as

 $\alpha(Y)r = \alpha(R(Y))$ for recurrent manifold.

Taking Covariant derivative of (1.4) with respect to X, we have

$$(\nabla_X J)(Y, Z, V) = (\nabla_X K)(Y, Z, V) + (\nabla_X K)(Y, V, Z)$$

Taking Cyclic sum of the above relation and using Bianchi's second identity, we have $(\nabla - I)(V, Z, V) + (\nabla - I)(Z, V, V) + (\nabla - I)(X, V, V)$

$$(\nabla_X J)(Y, Z, V) + (\nabla_Y J)(Z, X, V) + (\nabla_Z J)(X, Y, V) = (\nabla_X K)(Y, V, Z) + (\nabla_Y K)(Z, V, X) + (\nabla_Z K)(X, V, Y)$$
(2.6)

Let (M^n,g) is $(SWSS)_n$. Then in view of (1.3) and (1.4), The relation (2.6) reduces to

$$2\alpha(X)[K(Y,Z,V) + K(Y,V,Z)] + \alpha(Y)[K(X,Z,V) + K(X,V,Z)] + \alpha(Z)[K(Y,X,V) + K(Y,V,X)] + \alpha(Y)[K(Y,Z,X) + K(Y,X,Z)] + 2\alpha(Y)[K(Z,X,V) + K(Z,V,X)] + \alpha(Z)[K(Y,X,V) + K(Y,V,X)] + \alpha(X)[K(Z,Y,V) + K(Z,V,Y)] + \alpha(V)[K(Z,X,Y) + K(Z,Y,X)] + 2\alpha(Z)[K(X,Y,V) + K(X,V,Y)] + \alpha(X)[K(Z,Y,V) + K(Z,V,Y)] + \alpha(Y)[K(X,Z,V) + K(X,V,Z)] + \alpha(V)[K(X,Y,Z) + K(X,Z,Y)] = (\nabla_X K)(Y,V,Z) + (\nabla_Y K)(Z,V,X) + (\nabla_Z K)(X,V,Y).$$
(2.7)

Using (1.7) in (2.7) and using Bianchi's first identity and skew symmetric property of K(X,Y,Z), we have

$$\alpha(X)[K(Y,V,Z) + 2K(Z,V,Y)] + \alpha(Y)[K(Z,V,X) + 2K(X,V,Z)] + \alpha(Z)[K(X,V,Y) + 2K(Y,V,X)] = 0.$$
(2.8)

Contracting (2.8) with respect to X and using $(C_1^1K) = Ric(Y,Z), (C_3^1K)=0$ and

$$\alpha(K(Y, Z, V)) = \acute{K}(Y, Z, V, \rho),$$

we have

 $\acute{K}(Y,V,Z,\rho) + 2\acute{K}(Z,V,Y,\rho) + 2\alpha(Y)Ric(V,Z) + \alpha(Z)Ric(V,Y) = 0$

which in view of

$$\acute{K}(X, Y, Z, V) = \acute{K}(Z, V, X, Y)$$

gives

$$\dot{K}(Z,\rho,Y,V) + 2\dot{K}(Y,\rho,Z,V) + 2\alpha(Y)g(R(Z),V) + \alpha(Z)g(R(Y),V) = 0 \quad (2.9)$$

Factoring off V in (2.9), we have

$$K(Z,\rho,Y) + 2K(Y,\rho,Z) + 2\alpha(Y)R(Z) + \alpha(Z)R(Y) = 0$$

which on contracting with respect to Z gives

$$Ric(\rho, Y) + 2\alpha(Y)r + Ric(Y, \rho) = 0$$

or
$$Ric(Y, \rho) + \alpha(Y)r = 0$$
(2.10)

This leads us to the following result.

Theorem 3. In $(SWSS)_n$, the scalar curvature r and Ricci tensor of type (0,2) is related as (2.10), for recurrent manifold.

Acknowledgement

The authors gratefully acknowledge and thanks to Prof. Hukum Singh for their helpful suggestions in this work.

> Department of Applied Sciences and Humanities Jamia Millia Islamia, Jamia Nagar New Delhi-110025

References

- Chaki, M. C. and Gupta, B.: On conformally symmetric space, Indian Journal of Mathematics, 5 (1963), 113-122
- [2] Desai, P. and Amur, K.: On symmetric spaces, Tensor, N.S., 18 (1975), 119-124.
- [3] Khan, Q.: Differential Geometry of Manifolds, PHI Learning Private Limited, Delhi-110092 (2012).
- [4] Khan, Q.: On generalized recurrent sasakian manifold with special curvature tensor J (X,Y,Z) Ganita, 67(2) (2017), 189-194.
- [5] Khan, Q.: On Specil Weakly Projectively Symmetric Riemannian manifold, South East Asian J of Math and Math. Sci., 13, No. 2 (2017), 133-140.
- [6] Patterson, E. M.: Some theorems on Ricci-recurrent space, J. Lord. Math. Soc., 27 (1952), 297-295.
- [7] Ruse, H. S.: Three dimensianl spaces of recurrent curvature, proc. Lord. Math. Soc., 50(2) (1997), 438-446.

Azizullah Khan and Quddus Khan

- [8] Singh, H. and Khan, Q.: On symmetric Riemannian Manifolds, Novi Sad J. Math. 29(3) (1999), 301-308.
- [9] Singh, H. and Khan, Q.: On Special Weakly symmetric Riemannian Manifolds, Publ. Math. Debrecen, 58/3. (2001), 523-536.
- [10] Singh, H. and Khan, Q.: On a study of a special curvature tensor in a Riemannian manifold, J. Nat. Acad Math., Vol. 12 (1998), 75-84.
- [11] Tamassy, L. and Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifold, Tensor, N.S., 5(1993), 140-148