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Abstract

Summability is more general than that of ordinary convergence. This is a

branch of mathematical analysis in which an infinite series which is usually di-

vergent can converge to a finite sum s (say) by ordinary summation techniques

and become summable with the help of different summation means or meth-

ods. Many authors have discussed various summability methods. C method was

given by Ernesto Cesáro such that ordinary Cesáro summation was written as

(C, 1) summation whereas generalised Cesáro summation was given as (C,α). In

1913, Hardy [5] proved a Theorem on (C,α), α > 0 summability of the series.

(C,α), [C,α], |C,α| denotes respectively ordinary, strong and absolute Cesáro

summability methods. The product of ordinary and absolute summability has

been discussed by Borwein [1]. In this paper generalized product of ordinary and

absolute summability has been defined and some of its properties investigated.

Keywords and Phrases: (C,α), [C,α], |C,α| means, (C,α, β) means, Lebesgue

Integral.
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1. Introduction

Borwein [2] introduced the ordinary summability method (C,α) for series

and investigated some of its properties. (C,α), [C,α], |C,α| denotes respec-

tively ordinary, strong and absolute Cesáro summability methods. The method

[C,α], previsously defined only for α ≥ 0, is defined in a natural way for α < 0.

It is known that if
∞∑
0
an is summable |C,−α, β| to A and

∞∑
0
bn is summable

(C,−α, β) to B, where α ≥ 0, then
∞∑
0
cn is summable (C,−α, β) to AB. In

[2], the product of ordinary and absolute summability has been given and some

of its properties has been discussed. Mishra and Srivastava [8] introduced the

Summability method (C,α, β) for functions by generalizing (C,α) summability

method. Mishra and Mishra [9] discussed Strong Summability of functions based
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on (D, k)(C,α, β) Summability methods. In this paper, we discuss generalized

product of ordinary and absolute summability and investigate a relation between

different sets of parameters. The case β = 0 is due to [2].

Throughout this paper
∞∑
0
cn denotes the Cauchy product of the series

∞∑
0
an

and
∞∑
0
bn, i.e.

cn =

n∑
r=0

arbn−r. (1.1)

Now we can prove the following Theorems based on above results.

Theorem 1. If α ≥ 0 and
∞∑
0
an,

∞∑
0
bn are summable [C,−α, β] to A.B. The

case β = 0 of this Theorem has been established by Boyd [4]. We also prove the

following two Theorems.

Theorem 2. There are series
∞∑
0
an,

∞∑
0
bn respectively summable [C,−I, β] and

absolutely convergent, for which
∞∑
0
cn is not summable [C, 0, β].

Theorem 3. Given α ≥ −1, there are series
∞∑
0
an,

∞∑
0
bn respectively summable

[C,−I, β] and (C,α, β), for which
∞∑
0
cn is not summable [C,α+ 1, β].

The cases α = −1 and α = 0 of Theorem 3 have been proved by Boyd [4].

The case β = 0 is due to [1].

2. Notation, Definitions and Preliminary Result

Let
sn =

n∑
r=0

ar (n = 0, 1, . . .). (2.1)

Given matrices Q = (qn,r), P = (Pn,r) (n, r = 0, 1, .....) with Pn,r ≥ 0, the strong

summability method [P,Q,R] is defined (see [3]) as follows. Let

σn = Q(Sn) =
∞∑
r=0

qn,rSr. (2.2)

Then
∞∑
0
an is summable [P,Q,R] to s, and we write Sn → S[P,Q,R], if

∞∑
r=0

Pn,r|σr − s| (2.3)
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is defined for each n and tends to 0 and n → ∞.

ϵan = (
n+ a

n
),△asn =

n∑
r=0

ϵ−α−1
n−r sr(n = 1, . . . ; any real α). (2.4)

The (C,α, β) transform of f(x), which we denote by ∂α,β(x) is given by

Γ(α+ β + 1)

Γ(α)Γ(β + 1)

1

xα+β

x∫
0

(x− y)α−1yβf(y)dy, (α > 0, β > −1), (2.5)

If this exists for x > 0 and ∂α,β(x) tends to a limit s as x → ∞, we say that f(x)

is summable (C,α, β) to s, and we write f(x) → s(C,α, β) .

If α ≥ 0, p ≥ 1, β > −1, we say that f(y) is summable |C,α, β|p (absolutely

summable (C,α, β) with index p, if

∞∫
T

yp−1

∣∣∣∣ ddy∂α,β(y)
∣∣∣∣pdy < ∞. (2.6)

Define Cα,β to be the matrix Cα,0,β when α > −1, and Cα,−α when α ≤ −1.

Then, for any real α,β the statement
∞∑
0
αn is summable (C,α, β) to Aβ can be

interpreted (see [5]) as

σn = Cα,β(sn) → A+ β.

We now define, for every real α, β the strong Cesáro method [C,α, β] to be

[C1, Cα−1, β]. The definition is standard for α, β > 0; for α > 0; the method

[C,α, β] does not appear to have been defined explicity before. The following

proposition, which is a special case of a known result ([3] with X = C−1,1), shows

that our definition of [C, 0, β] is equivalent to one framed by Hyslop [6]. Following

inclusion results are obvious.

I. The series
∞∑
0
αn is summable [C, 0, β] to A+β if and only if it is convergent

with sum A and

∞∑
r=0

r|αr| = O(n+ β).

Given summability methods X, Y we say that X is included in Y and write

X ⊆ Y if every series summable X is also Y to the same sum; X and Y are said

to be equivalent and we write X ≃ Y if each is included in the other.

We list next time inclusions, which hold for every real α, β together with

reference to results of which they are immediate consequences.
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II. [C,α, β] ≃ [C1, Cα−1,β ] (β > −1, α+ β > 0).

III. [C,α, β] ⊆ [C,α+ δ, β][δ, β > 0].

IV. [C,α− 1, β] ⊆ [C,α, β] ⊆ [C,α, β].

V. |C,α, β| ⊆ [C,α, β].

As in the case with series, if an integral is (C,α) summable for some value of

α ≥ 0, then it is also (C, β) summable for all β > α, and the value of the

resulting limit is the same [12].

3. Proof of the Theorems

In order to prove Theorem 1 we require a Lemma which is similar to one

proved by Winn ([7]), 483-484).

Lemma 3.1. If r, u, v > 0 and α, β satisfying same conditions, we have

Sn =

n∑
r=0

sr = O(n) (3.1)

then, for α < 1,
n∑

r=0
ϵ−α,β
r−u sr+u = O(ϵ1−α,β

n ).

Proof. By partial integration over N , we have

ϵ−α,β
r−u sr+u = (r + 1)[

N∫
1

|
1∫

0

(1− f(v)){Cα,β(vyv)− r}|Cα,β(vyv−1)
1/α]α, (3.2)

Therefore

ϵ−α,β
r−u sr+u → 0. (3.3)

Since wr
(r+1+β) → 0 and

n∑
r=0

ϵ−α,β
r = ϵ1−α,β

n , the required result can now be obtained

by an application of Hyslop’s Theorem.

Proof of Theorem 1.

Case (i). Suppose A = B = 0.

Let µ = m+α+β, where m is a non-negative integer and 0 ≤ α+β+r < 2;

and let

α+ r − β =
n∑

r=0

ϵ−α,
r

sr
r + 1

+O(ϵ1−α
n ).

Hence

sn =
n∑

r=0

αr,β tn =
n∑

r=0

br,β . (3.4)
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It has been shown ([1], 47) that a necessary and sufficient condition for
∞∑
0
cn to

be summable (C,−µ, β) to 0 is that

Xn+r + Yn+r + Zn+r = O(1 + β + r), (3.5)

where

Xn+r =

m∑
p=1

1

ϵ
1−α)
n+r

n∑
r=0

△m+1−p+r(ϵm+1−p
r sr) (3.6)

when m+ r + v ≥ 1 and Xn = 0 when m+ β = 0, and

Yn+r =
1

ϵ1−α
n+r

n∑
r=0

tn−r△µ+1−β(ϵµ+1+β
r )

(ϵµ+1−α
n

sr+v

)
, (3.7)

Zn+r =
1

ϵ1−α
n

n∑
r=0

sn−r△µ+1(ϵµ+1−α
r+n tr+v), (3.8)

By hypothesis, sn → 0[C,−µ, β], tn → 0[C,−µ, β], so that by the second inclusion

in IV [8],

sn → 0[C,−µ, β], tn → 0[C,−µ, β]; (3.9)

and a known consequence ([3], 47-49) is that

(C,α)−
∞∑
j=0

aj = lim
n→∞

n∑
j=0

(
n

j

)
(

n+ α

j

) aj .

Now, let

yn = △µ+1(ϵµ+1−α
r sn) = ϵ−α

r C−µ−1,µ+1−α (sn) (3.10)

from the hypothesis sn → 0[C,−µ, β] we deduce, by II, that
n∑

r=0

|yr|
ϵ−α,β
r

+O(n). (3.11)

and hence, by the Lemma, that

1

ϵ1−α,β
n

n∑
r=0

|yr| = O(1). (3.12)

Next, since tn → 0[C,−µ, β], we have by III, that tn = O(1) and it follows that

Yn =
1

ϵ1−α
n

n∑
r=0

tn−ryr = O(1). (3.13)

Similarly Zn = O(1); and the proof of Case (i) is complete.

Case (ii). Suppose now that there are no restrictions on A, B.
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Let α′
0 = α0 −A, b0′ = b0 −B; α′

r = αr, b
′
r = br(r > 0) and let

c′n =

n∑
r=0

α′
rb

′
n−r. (3.14)

Since
∞∑
0
αn,

∞∑
0
bn are summable (C,−µ) to A, B respectively, it is readily seen

that
∞∑
0
αn and

∞∑
0
bn are both summable (C,−µ, β) to 0, from which it follows,

by Case (i), that
∞∑
0
α′
n is summable (C,−µ) to 0. But

∞∑
n=0

Aα
nx

n =

∞∑
n=0

anx
n

(1− x)1+α
.

Hence
N∑
0

αn = A
N∑
0

bn −A+B, (3.15)

and
∞∑
0
αn,

∞∑
0
bn are summable (C,−µ, β) to A, B respectively. Hence bounded

(C,α, β)− variation over (0,∞) see [9].

Proof of Theorem 2. For convenience we divide the proof into three parts.

Case I. The case is obvious.

Case II. α = β + r

We show now that given any unbounded sequence of positive number {Un},
there is a sequence {un} such that

Un ≥ 0,
∞∑
0

Un < ∞ and
N∑
0

rvr ̸= 0(n). (3.16)

Let {βn} be a sequence not converging to 0 such that

βn ≥ 0 and
∞∑
0

βn
Un

< ∞; (3.17)

a suitable sequence can be constructed by first defining an increasing sequence of

positive nv for which

Unv > v2,

and then taking βn to be 1 whenever n = nv and 0 otherwise.
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Let

α0 = 0, αn =
βn
Un

− n− 1

n

βn−1

Un−1
(n ≥ 1). (3.18)

Then

Un

n∑
0

rαr = nβn

and
∞∑
0

|αn| < ∞.

Setting un = |αn|, we have

Un

n∑
0

rur ≥ nβn, (3.19)

and so the sequence {vn} satisfies (2) as required.

Case III. n = β + r

To prove our Theorem take αn = (−1)nun where un > 0, nun = 0 (1)

and
∞∑
0
(−1)nun is conditionally convergent; e.g. un = 1

n+2 log(n + 2). Then

un =
n∑
0
ur is positive and tends to infinity, and

∞∑
0
ar is summable (C−1, β). Let

bn = (−1)nbn where {un} is a sequence satisfying (2); then
∞∑
0
bn is absolutely

convergent. In virtue of I, the Cauchy sum
∞∑
0
cn of the above series

∞∑
0
an,

∞∑
0
bn

is not summable [C, 0, β] due to [10].

Proof of Theorem 3. Since the case α+ β = −1 has been proved by Boyd [4]

we may suppose that α+ β > −1. Let

f(x) =
xa+1

log log x
;

then, as x → ∞,

f ′(x) =
(a+ β + 1)xa

log log x
(1 +O(1)) (3.20)

and so there is a positive integer p such that

f(x+ 1) > f(x) > for x ≥ p

and let

βn =
(−1)n

ϵan
(δn − δp−1) (n ≥ 0).
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Then, for n > p,

βn =
(−1)n

ϵan
f ′(n− 1 + θ) (0 < θ < 1),

and so, by (3.20),

βn = 0

(
1

log log n

)
= O(1)n → ∞. (3.21)

Now set

α0 = α1 = 0, αn =
(−1)n

n log n
(n ≥ 2).

Then
∞∑
0
αn is summable (C,−1, β), and Cα,β(Bn) = βn → 0,

∞∑
0
bn is summable

(C,α, β)n to 0. Let

cn =
n∑

r=0

arbn−r, Yn =
n∑

r=0

cr, σn = Cα(Yn) (3.22)

Then

Yn =
n∑

r=0

an−rBr =
n∑

r=0

an−r,△α(ϵαr βr) = (−1)n
n∑

r=0

an−r,|δr − δr−1| (3.23)

and so, n → ∞,

a(x) → 0(c, r) ⇒ a(x) → 0(c, r′) for r′ > r ≥ 0.

It follows that

b(x) → 0(c, r) ⇒ b(x) → 0(c, r′) for r′ > r ≥ 0 (3.24)

and hence, by our Lemma, that

c(x) → 0(c, α+ 1, β) ⇒ c(x) → 0(c, α, β) for α > β ≥ 0. (3.25)

Necessary Condition: If r = r′ = −1,the Theorem immediate follows from the

summability of (C,−1, α, β). If r > −1, then by consistency Theorem for (C, r, α)

summability (Gehring [3], Theorem 4.2.1]) it follows that both the functions c(x)

and Cα,β(x) are (C,α, β) convergent to s, see [11]. By [Hardy [5], Equation

(6.1.6)], Sn
r = Sn

r+1+
1

r+1
f(x)

Cα,β(x)
, and the result follows since a linear combination

of functions summable (C, k, α) to itself. The sufficient conditions to prove the

theorem are: Consequently
∞∑
0
cn is not summable [C,α+1, β] to 0. However, by

a standard result ([7], Theorem 4),
∞∑
0
cn is summable [C,α + 1, β] to 0 and so,

by the second inclusion in IV [2], the series cannot be summable [C,α + 1, β] to

any number other than 0. Hence
∞∑
0
cn is not summable [C,α+ 1, β].
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Remark. It is known in ([5], Theorem 6) that, given α ≥ −1, there are series
∞∑
0
αn,

∞∑
0
bn, respectively summable (C,−1, β) and (C,α, β) for which

∞∑
0
cn is

not summable (C,α, β).

Our Theorem 3 is stronger than this result, since (C,α, β) is included in,

but is not equivalent to, [C,α+ 1, β].
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