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Abstract

Summability is more general than that of ordinary convergence. This is a
branch of mathematical analysis in which an infinite series which is usually di-
vergent can converge to a finite sum s (say) by ordinary summation techniques
and become summable with the help of different summation means or meth-
ods. Many authors have discussed various summability methods. C method was
given by Ernesto Cesaro such that ordinary Cesaro summation was written as
(C,1) summation whereas generalised Cesaro summation was given as (C, «). In
1913, Hardy [5] proved a Theorem on (C,«), a > 0 summability of the series.
(C,a), [C,a], |C,al| denotes respectively ordinary, strong and absolute Cesaro
summability methods. The product of ordinary and absolute summability has
been discussed by Borwein [1]. In this paper generalized product of ordinary and
absolute summability has been defined and some of its properties investigated.

Keywords and Phrases: (C, «), [C, o], |C, a] means, (C, a, ) means, Lebesgue
Integral.
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1. Introduction

Borwein [2] introduced the ordinary summability method (C,«) for series
and investigated some of its properties. (C,a), [C,a], |C,a| denotes respec-
tively ordinary, strong and absolute Cesaro summability methods. The method
[C, o], previsously defined only for aw > 0, is defined in a natural way for o < 0.

oo [e.e]
It is known that if ) a, is summable |C,—a, | to A and > b, is summable
0 0

oo
(C,—a, ) to B, where o > 0, then ) ¢, is summable (C,—a, ) to AB. In
0

[2], the product of ordinary and absolute summability has been given and some
of its properties has been discussed. Mishra and Srivastava [8] introduced the
Summability method (C,a, 8) for functions by generalizing (C, ) summability
method. Mishra and Mishra [9] discussed Strong Summability of functions based
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on (D,k)(C,«, ) Summability methods. In this paper, we discuss generalized
product of ordinary and absolute summability and investigate a relation between
different sets of parameters. The case 5 = 0 is due to [2].

o (o]
Throughout this paper Y ¢, denotes the Cauchy product of the series > a,
0 0

and Y by, i.e.
0

Cn = zn:arbn,r. (1.1)
r=0

Now we can prove the following Theorems based on above results.

Theorem 1. If « > 0 and ) ay, Y b, are summable [C,—a, 3] to A.B. The
0 0

case = 0 of this Theorem has been established by Boyd [4]. We also prove the
following two Theorems.

(o ¢] o0
Theorem 2. There are series Y ay, Y b, respectively summable [C, —1I, §] and
0 0

o0

absolutely convergent, for which ¢, is not summable [C, 0, 5].
0
o0 o0
Theorem 3. Given a > —1, there are series ) a,, Y b, respectively summable
0

[C,—I, 5] and (C,«, 3), for which > ¢, is not summable [C,a + 1, 3].
0

The cases @ = —1 and o = 0 of Theorem 3 have been proved by Boyd [4].
The case = 0 is due to [1].

2. Notation, Definitions and Preliminary Result

Let n
Sn=Y_ar (n=0,1,...). (2.1)
r=0

Given matrices Q = (gn ), P = (Py,) (n,7 =0,1,.....) with P, , > 0, the strong
summability method [P, Q, R] is defined (see [3]) as follows. Let

o0 =Q(Sn) = tnsSr- (2.2)
r=0

Then ) a, is summable [P, Q, R] to s, and we write S,, — S|P, Q, R], if
0

o
> Puslor —s| (2.3)
r=0
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is defined for each n and tends to 0 and n — oo.
n+a - —a—1
— A n = o r = 17 “e , 1 . 24
er = ( " ), Aas TZ% €, sp(n any real o) (2.4)
The (C, a, 8) transform of f(z), which we denote by J, g(x) is given by

Tla+8+1) 1
I(a)D(8+ 1) xoth

[@-r Wi, @>08>-1, (29
0

If this exists for > 0 and 9, g(x) tends to a limit s as x — oo, we say that f(x)
is summable (C, a, 8) to s, and we write f(z) — s(C,a, 3) .

Ifa>0,p>1, 3> —1, wesay that f(y) is summable |C, «, 3|, (absolutely
summable (C, a, #) with index p, if

o0 d
p—1
/ Y 'dyaa,ﬂ(y)
T

Define C, g to be the matrix C, 05 when a > —1, and Cy o when a < —1.
o

P
dy < 0. (2.6)

Then, for any real o,/ the statement ) «, is summable (C,«, 8) to AS can be
0

interpreted (see [5]) as
Op = aﬁ(sn) — A+ ,3

We now define, for every real a, 8 the strong Cesaro method [C, a, 8] to be
[C1,Cq-1,B]. The definition is standard for o, > 0; for a« > 0; the method
[C, a, B] does not appear to have been defined explicity before. The following
proposition, which is a special case of a known result ([3] with X = C_; 1), shows
that our definition of [C, 0, 5] is equivalent to one framed by Hyslop [6]. Following
inclusion results are obvious.

o0
I. The series ) o, is summable [C, 0, 8] to A+ if and only if it is convergent
0

with sum A and
[e.e]
> rlay| = 0(n+ B).
r=0
Given summability methods X, Y we say that X is included in Y and write
X CY if every series summable X is also Y to the same sum; X and Y are said
to be equivalent and we write X ~ Y if each is included in the other.

We list next time inclusions, which hold for every real «, 8 together with
reference to results of which they are immediate consequences.
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II. [C, e, ] = [C1,Caz18] (B>—1,a+ 3> 0).
IIL. [C,a, 5] C [C,a+ 46, 5]0,8 > 0].

IV. [Cla— 1,8 C [C 6] C [Cro0 .

V. |C,a, 5| C[C,a, f].

As in the case with series, if an integral is (C,«) summable for some value of
a > 0, then it is also (C, ) summable for all 8 > «, and the value of the
resulting limit is the same [12].

3. Proof of the Theorems

In order to prove Theorem 1 we require a Lemma which is similar to one
proved by Winn ([7]), 483-484).

Lemma 3.1. If r,u,v > 0 and «, (§ satisfying same conditions, we have

n

Sn=Y s =0(n) (3.1)

r=0

then, for a < 1, Z €, 3r+u = O(en n a’ﬁ)

r=0

Proof. By partial integration over N, we have

N 1
= 4 DL | [ (= 70 Caplom) = 1) Capop) V7, (32
1 0
Therefore
e P sy — 0. (3.3)
Since GITER) 1 3 0 and Z e P = e P , the required result can now be obtained

by an application of Hyslop s Theorem.
Proof of Theorem 1.
Case (i). Suppose A = B = 0.

Let 4 = m+ «a+ B, where m is a non-negative integer and 0 < a+8+7r < 2;

and let
n
a—i—r—ﬁzZe;a’ O(el™9).
r=0

Hence

n n
Sp = Z o gty = Zbr,g. (3.4)
r=0 r=0
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o0
It has been shown ([1], 47) that a necessary and sufficient condition for ) ¢, to
0

be summable (C, —u, 5) to 0 is that

Xntr + Yoir + Zpnsr =01+ B+ 1), (3.5)
where
AN |
Xntr =D 1= S amttepir (g (3.6)
p=1 En—H" r=0
when m +r+v > 1 and Xn—OWhenm—i—B:O, and
,u—l—l—a
Yoy = Zt ] (| G (3.7)
n—l—'r r=0 Sr+v
n+7‘ - 1 a an TAH+1 ﬁfj:i a r+v)7 (38)

By hypothesis, s, — 0[C, —u, ], tn — 0[C, —pu, B, so that by the second inclusion
in IV [8],
sp — 0[C, —pu, B], tn, — 0[C, —u, B; (3.9)

and a known consequence ([3], 47-49) is that

()
oo ) n ]
(C,a) — Zaj = nl;n;oz

7(1]&
i=0 = (”+O‘>
j

Now, let
Yn = DT %,) = & “Cp—1,ut1-a (sn) (3.10)
from the hypothesis s,, — 0[C, —u, 5] we deduce, by II, that
3 '}/;ﬁ (3.11)
r=0 €r

and hence, by the Lemma, that

1 n
WZ\%\ =0(1). (3.12)
n r=0
Next, since t,, — 0[C, —pu, 8], we have by III, that ¢, = O(1) and it follows that
1 n
n r=0

Similarly Z, = O(1); and the proof of Case (i) is complete.

Case (ii). Suppose now that there are no restrictions on A, B.
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Let oy = ap — A, b/ = bp — B; o). = o, b, = by(r > 0) and let

=Y alb (3.14)
r=0

(o) o0
Since Y apn, > by are summable (C, —pu) to A, B respectively, it is readily seen
0 0
(o] o
that Y a, and ) b, are both summable (C, —u, 3) to 0, from which it follows,
0 0

[e.e]
by Case (i), that }_ o/, is summable (C, —pu) to 0. But
0

e Z anx"
ASa" = U=
; (1 _ x)lJra
Hence
N N
 apn=A> b,—A+B, (3.15)
0 0

and io:an, io: b, are summable (C, —pu, 5) to A, B respectively. Hence bounded
(C,oe,oﬁ)— Vgriation over (0,00) see [9].

Proof of Theorem 2. For convenience we divide the proof into three parts.
Case 1. The case is obvious.

Casell. a=8+r

We show now that given any unbounded sequence of positive number {U,},
there is a sequence {u,} such that

00 N
Up>0, Y Up<ooand Y rv.#0(n). (3.16)
0 0

Let {3,} be a sequence not converging to 0 such that
— 8
Brn >0 and 2 U—Z < 00; (3.17)

a suitable sequence can be constructed by first defining an increasing sequence of
positive n, for which

2
Upy > 07,

and then taking 3, to be 1 whenever n = n, and 0 otherwise.
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Let 8 14
n— -1
=0, ap = — — ” >1). 3.18
Then
n
U, Z roy =npy
0
and
[e.e]
Z || < o0.
0
Setting u, = |ay,|, we have
n
U, Z TUp > Ny, (3.19)
0
and so the sequence {v,} satisfies (2) as required.
Case IIl. n=03+r
To prove our Theorem take a,, = (—1)"u, where u, > 0, nu, = 0 (1)
[ee]
and > (—1)"u, is conditionally convergent; e.g. wu, = n%ﬂlog(n + 2). Then
0

n o0
un = Y Uy is positive and tends to infinity, and > a, is summable (C'—1, 3). Let
0 0
o0
b, = (—1)"b, where {u,} is a sequence satisfying (2); then »_ b, is absolutely
0

o0 o0 o0
convergent. In virtue of I, the Cauchy sum ) ¢, of the above series Y ay,, Y. by
0 0 0
is not summable [C, 0, 3] due to [10].

Proof of Theorem 3. Since the case o + = —1 has been proved by Boyd [4]
we may suppose that a + § > —1. Let

xa—H
flw) = loglog z’

then, as © — o0,

(a+B+1)z®

fll@) = "————
loglog x

and so there is a positive integer p such that

flx+1)> f(z) > forx>p

(1+0(1)) (3.20)

and let

Bn = ﬂ((sn - (5p_1) (n > 0)

a
6TL
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Then, for n > p,

b= 110 0 <0 <),
and so, by (3.20),
1
Now set
(=1)"

oy =a; =0, oy = (n>2).
nlogn

o0

Then ) o, is summable (C, -1, ), and Cq 3(Bp) = B, — 0, Y_ by, is summable
0 0
(C,a, B)n to 0. Let
=Y bpy, Yo=Y ¢, on=Ca(Yn) (3.22)
r=0 r=0

Then

Yn—zan r By —Zan T, A aﬂr = Zan 7"|5 r71| (323)

and so, n — oo,
a(z) — 0(c,7) = a(x) = 0(c,r’) for v’ > r > 0.

It follows that

b(z) — 0(c,7) = b(z) — 0(c,r’) for 7' >r >0 (3.24)

and hence, by our Lemma, that
c(x) = 0(c,a+1,8) = c¢(x) = 0(c,a, ) for a > 3 > 0. (3.25)
Necessary Condition: If r = ' = —1,the Theorem immediate follows from the

summability of (C, —1,a, 8). If r > —1, then by consistency Theorem for (C,r, a)
summability (Gehring [3], Theorem 4.2.1]) it follows that both the functions c(z)
and Cy(x) are (C, a,ﬁ) convergent to s, see [11]. By [Hardy [5], Equation
(6.1.6)], S;* = S 1 + - +1 Cf (x() > and the result follows since a linear combination
of functions summable (C, k,a) to itself. The sufficient conditions to prove the

theorem are: Consequently ) ¢, is not summable [C, o+ 1, 8] to 0. However, by
0

oo
a standard result ([7], Theorem 4), > ¢, is summable [C,a + 1, ] to 0 and so,
0

by the second inclusion in IV [2], the series cannot be summable [C,a + 1, f] to
(o)

any number other than 0. Hence ) ¢, is not summable [C, o + 1, 3].
0
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Remark. It is known in ([5], Theorem 6) that, given o > —1, there are series

o0 o0 o0
> am, Y by, respectively summable (C,—1,3) and (C,«, 3) for which > ¢, is
0 0 0

not summable (C, «, ).

Our Theorem 3 is stronger than this result, since (C,a, ) is included in,

but is not equivalent to, [C,a + 1, (].

[11]

[12]
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