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Abstract

This paper considering the Power function distribution as a life time model.
The Bayesian estimation for the parameter, reliability function and hazard rate
of power function distribution is obtained in case of lower record values. This
study provides the Bayesian estimation under both informative (gamma) and non-
informative (quasi, uniform, Jeffreys’) priors. Both symmetric (squared error loss
function) and asymmetric (generalized entropy loss function) loss functions are
also considered for the Bayesian estimation.

Keywords : Power function distribution, Lower record values, Priors, Loss func-
tions.
2010 AMS Subject Classification : 62F15, 65C05.

1. Introduction

Meniconi and Barry [10] showed that power function distribution is useful to
assess electrical component reliability. Power function distribution shows a better
fit for failure time data and offers more suitable information about reliability and
hazard rates. Due to this property, power function distribution is preferred over
lognormal, exponential and Weibull distributions. Dallas [4] has been showed
that if X follows power distribution, then 1/X follows the Pareto distribution.
Rahman et al. [12] have used different symmetric and asymmetric loss functions
to get the Bayes estimators for the parameter of power function distribution
using complete sample. Kifayat et al. [8] compared the Bayes estimators of the
parameter of power function distribution for the informative and non-informative
priors.

This paper considers the Bayesian estimation of the parameter, reliability
function and hazard rate of the power function distribution. For the Bayesian
inference, both informative and non-informative priors are considered. The sym-
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metric and asymmetric loss functions are also taken into consideration.

The scheme of lower record values is adopted for the data collection, the
thrust of the study is the Bayesian estimation of the power function distribution
based on lower record values. The concept of record values has been discussed
widely in the literature for Bayesian estimation by several authors viz. Soliman
et al. [14]; Tarvirdizade [15]; Nadar and Kizilaslan [11]; Singh et al. [13]. Baklizi,
A. [2] have discussed the likelihood and Bayesian estimation of stress-strength
reliability of generalized exponential distribution using lower record value. Hassan
et al. [7] considered the estimation of stress- strength reliability using lower record
values from exponentiated inverted Weibull distribution. Kumari et al. [9] have
discussed the Bayesian estimation of stress-strength reliability for generalized
inverted exponential distribution using upper record values.

Record values played a measure role in daily life problems concerning data
relating to numerous fields such as economics, weather, sports etc. Chandler
[3] introduced the main idea of record values, inter-record times and started the
statistical study of record values as a model for successive extremes in a sequence
of independently and identically distributed random variables. The record values
can be classified into two categories, lower record values and upper record values.
An observation X; will be called an upper record value if its value is greater than
all of previous observations i.e.,X; > X; for every j > i and it will be called a
lower record value if its value is less than all of previous observations i.e., X; < X;
for every j > 1.

A continuous random variable X is said to have a Power function distribu-
tion, if its probability density function (pdf) is

f(z) = 02971, 0<z<1,0>0,
where 6 is shape parameter.
The corresponding cumulative density function (cdf) is

F(z) = 2% 0<z<1,60>0.

The reliability function of the power function distribution is given by

R(z)=1—2a’.

The hazard rate of the power function distribution is given by

933.971

h(z) = 120
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2. Likelihood Function

Let (z(1),%(2), ---s T(m)) be the m lower record values i.e., x(1) > Tg) > ... >
T(y from a population with pdf f(x) and cdf F(x), then, the likelihood function
is defined as (Arnold et al. [1])

m—1 f(z@)

L= .

Let (x(l),m(g), ...,x(m)) be the m lower record values from power function
distribution, the likelihood function is
Gmx?m)
L(z;0) = —;
i=1 o)

3. Bayesian Estimation

In this Section, Bayes estimator are derived using informative and non-
informative priors under both symmetric and asymmetric loss functions. A brief
introduction about loss function is given below:

Squared Error Loss Function

The squared error loss function (SELF) is the simplest symmetric loss func-
tion and it is defined as L(,0) o (6 — 6)? where # is the Bayes estimator of
unknown parameter . The Bayes estimator of § under SELF is § = E(0|z),

where expectation is taken with respect to posterior density.

General Entropy Loss Function

Generalized entropy loss function (GELF) is an asymmetric loss function
and it is suggested by Calabria and Pulcini (1996). This loss function is a gener-
alization of the entropy loss function and defined as

L(0,0) x <Z> —cln (Z) -1,

where ¢ # 0. If ¢ < 0, then, under estimation of the parameter gets more serious
than over estimation and vice-versa. Bayes estimator of # under GELF is

6= (B0 )] /).

For prior information, we have considered two types of priors, one is infor-
mative prior and the other is non-informative prior. A brief introduction of prior
distribution is given below:
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Non-Informative Prior

Non-informative priors are used when no prior information or a little infor-
mation is available about the parameter. Here, we have considered, three types of
non-informative priors viz. uniform prior, quasi prior, Jeffreys’ prior as discussed
below:

(i) Uniform Prior: Uniform prior for the parameter 6 is given by
g1(0) o< 1.

(ii) Quasi Prior: Quasi prior for the parameter 6 is given by
1
gz(e)ocw; d>0,60>0.

(iii) Jeffreys’ Prior: Jeffreys’ (1961) provides a method to select a non-
informative prior for the parameter 6 and obtained prior from this method
is called Jefferys’ prior. Jefferys’ prior is based on Fisher information cri-
teria of the model. Jefferys’ prior for single parameter 6 is defined as

9(0) o< V1(0),

where I(0) = —Ejp {%}, is the Fisher information based on like-
lihood function L(z;8).
In case of power function distribution, Jeffreys’ prior is
1

g3(0) g’ 6 > 0.

Informative Prior

The most common used informative prior is the gamma prior and is given
by
g4(0) o< g1 e % 6>0 a1,b >0.

where a; and b; are the hyper-parameters.

Credible Intervals

In Bayesian statistics, a credible interval is an interval in the domain of a
posterior probability distribution. The 100(1 — @)% equal tail credible interval
for exact posterior distribution can be defined as (Eberly and Casella [6])

P(0<L):/L

—00

wO)2)do =<, PO>U) = / (0] z)do = &
~ 2 U ~ 2
where (6| ) is the posterior density of 6 and (L,U) are the lower limit and

upper limit of the credible interval, respectively.
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3.1. Bayesian Estimation of 8, R(t) and h(t) using gamma prior under
SELF and GELF

The posterior distribution of the unknown parameter 6 in case of gamma
prior is

o) — L(x;6)g4(6)
= Jo© L(;0)g4(0)do

m+a1—1_,-b10,.0 1 mt+ay
_ gmtai—1le=by o) {bl +1In (x(m)>}
L(m+ay)
Bayes estimator of § in case of gamma prior under SELF is given by

m+ aj

éGS:/ or(0)2)d = — T
0 ~ b1—|—ln( 1 )

T(m)

Bayes estimator of R(¢) under SELF is given by

m-+a
b1+ln( 1 ) '

Z(m)
1
bitin (tﬂf(m )

Bayes estimator of h(¢) under SELF is given by

Rtios = [ RO=(6l2)d0 =1 -

~

h(t)as = /0 b)) z)df

v vin ()} o :

t 1 m+ai+1°
=0 {b i (i) |

Bayes estimator of § under GELF is given by
} (=1/9) 1 [F(m +ap - c)} (=1/¢)
b+t (1) L Timta)

m

boa = [ / 0w (6] x)do
0 ~
Bayes estimator of R(t) under GELF is given by

R(t)ee = [/000(1 e {)d@} (~1/¢)

. j (~1/¢)
B ER () |

5 (e ()}
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Bayes estimator of h(t) under GELF is given by

e = _/ooo <fti;>_cw<e| g)del o

[ (=1/0)
) {1 +m (x(fn))}(m“” i ( j ) (~1)tT(m + a1 — ¢) 1
Tomta) 5 (o (£2)}

3.2. Bayesian estimation in case of Quasi Prior, Jeffreys’ Prior and
Uniform Prior under SELF and GELF

Quasi, Jeffreys’ and Uniform priors can be obtained from gamma prior by
putting the particular values of the hyper-parameters as given below:

(i) If a3 =1 —d and b; = 0, gamma prior provides Quasi prior.
(ii) If a3 = 0 and b; = 0, gamma prior provides Jeffreys’ prior.
(iii) If a3 =1 and by = 0, gamma prior provides Uniform prior.

Bayes estimators of 0, R(t) and h(t) using Quasi prior under SELF are given by

A m—d+1
)
. m—d+1
R(t)gs =1 1111 ft”“’g’”); ,
(m)
and i) {m ( ) )} (m—d+1) )

7 _ (m) .
h(t)os ; JZ; [ln ($(m)1tj+1ﬂ (m—d+2)

Bayes estimators of §, R(t) and h(t) using Quasi prior under GELF are given by

oo 1 {F(m—d—c+1)r”°’)
QC’Y*ID(L> L(m—d+1)

T(m)

)
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and
(=1/¢)

(o (o))" e (§) reminaceey

F(m—d+1) {m (ﬁ)}m—d—cﬂ
Z(m)

Bayes estimators of 6, R(t) and h(t) using Jeffreys’ prior under SELF are given

by
m

-
T %)

A ()"

Rt)ss = 1— ,

" (tw(lrm)

2 _ m{ln <$<1m>> e 1

h(t)ss = ; JZO {ln (%) }m+1-

Bayes estimators of 6, R(t) and h(t) using Jeffreys’ prior under GELF are given
by

)

o 1 I'(m—c¢) (=1/¢)
Hm‘mgg)[mm]

m)

A Cveme (F)ew ]
R(t) ;e = {ln <x(m)>} ]Z% {ln <m>}(m) ;

¢ - (=1/¢)
{ln (ﬁ) }m i ( j > (=1)tT'(m —¢)
o3\ | (m—¢) ’
EELICH)

Bayes estimators of 8, R(t) and h(t) using Uniform prior under SELF are given
by

N m—+1
QUS_IH<1>;

T(m)
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iy (L)) =
MO + { t( (m)>} jz;{ln<. 11 )}m+2.
EF ()

Bayes estimators of 6, R(t) and h(t) using Uniform prior under GELF are given
by

) ] )]
e =1, (11) R

T(m)

- e\ o (~1/¢)
O NS e 0 il

Z (m) =0 {in (tj;(m))}(m“)

| L) 5 (Gt

S e

(=1/¢)

4. Simulation

In this section, a simulation study is conducted to compare the performance
of proposed estimators in terms of risk function and length of credible intervals.
Simulation study is conducted based on the 3000 replications. Three different
sample sizes are considered viz., small (n = 20), medium (n = 30), and large (n =
50). In case of informative prior, the hyper-parameters are chosen as prior mean is
equal to true value of parameter. The risk function and length of credible intervals
of Bayes estimates using informative prior of 6, R(t) and h(t) are presented in
Table 1. Table 2 listed the risk function and length of credible intervals of Bayes
estimates using non-informative prior of 0, R(t) and h(t).

Table 1: Risk function and length of credible intervals of Bayes estimates using
informative prior for 6 = 2, t = 0.5.

n SELF | GELF ¢ =2.0 | GELF ¢ = —2.0 | Length of credible intervals
20 | 0.0437 0.0266 0.0262 0.1563
0 30 | 0.0364 0.0183 0.0196 0.1514
50 | 0.0313 0.0123 0.0134 0.1267
20 | 0.0597 0.0361 0.0352 0.1559
R(t) | 30 | 0.0476 0.0282 0.0194 0.1512
50 | 0.0367 0.0171 0.0132 0.1309
20 | 0.0410 0.0222 0.0267 0.1873
h(t) | 30 | 0.0360 0.0192 0.0205 0.1814
50 | 0.0291 0.0161 0.0252 0.1636
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Table 2: Risk function and length of credible intervals of Bayes estimates using
non-informative prior for § = 2, t = 0.5.

n SELF | GELF ¢ =2.0 | GELF ¢ = —2.0 | Length of credible intervals
20 | 0.1914 0.1670 0.1720 0.2571
0 30 | 0.1781 0.1614 0.1453 0.2120
50 | 0.1568 0.1105 0.1323 0.1842
20 | 0.1945 0.1695 0.1649 0.2194
R(t) | 30 | 0.1831 0.1624 0.1602 0.1911
50 | 0.1698 0.1473 0.1432 0.1683
20 | 0.2044 0.1823 0.1928 0.2230
h(t) | 30 | 0.1940 0.1677 0.1715 0.2012
50 | 0.1541 0.1400 0.1449 0.1743

It can be seen from Tables 1-2, the length of credible intervals decreases as the
sample size increases. It can also be observed that the risk function and length of
credible intervals in case of informative priors smaller than the non-informative
priors.

5. Conclusion

This paper considered the Power function distribution as a life time model.
The Bayesian estimation for the parameter, reliability function and hazard rate
of power function distribution is done in case of lower record values. This study
provides the Bayesian estimation under both informative (gamma) and non-
informative (quasi, uniform, Jeffreys’) priors. Both symmetric (squared error
loss function) and asymmetric (generalized entropy loss function) loss functions
is considered for the Bayesian estimation. Bayes estimators are obtained in closed
form under both informative (gamma) and non-informative (quasi, uniform, Jef-
freys’) priors. A simulation study is also conducted to compare the performance
of proposed estimators.
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