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Abstract

This paper considering the Power function distribution as a life time model.

The Bayesian estimation for the parameter, reliability function and hazard rate

of power function distribution is obtained in case of lower record values. This

study provides the Bayesian estimation under both informative (gamma) and non-

informative (quasi, uniform, Jeffreys’) priors. Both symmetric (squared error loss

function) and asymmetric (generalized entropy loss function) loss functions are

also considered for the Bayesian estimation.

Keywords : Power function distribution, Lower record values, Priors, Loss func-

tions.
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1. Introduction

Meniconi and Barry [10] showed that power function distribution is useful to

assess electrical component reliability. Power function distribution shows a better

fit for failure time data and offers more suitable information about reliability and

hazard rates. Due to this property, power function distribution is preferred over

lognormal, exponential and Weibull distributions. Dallas [4] has been showed

that if X follows power distribution, then 1/X follows the Pareto distribution.

Rahman et al. [12] have used different symmetric and asymmetric loss functions

to get the Bayes estimators for the parameter of power function distribution

using complete sample. Kifayat et al. [8] compared the Bayes estimators of the

parameter of power function distribution for the informative and non-informative

priors.

This paper considers the Bayesian estimation of the parameter, reliability

function and hazard rate of the power function distribution. For the Bayesian

inference, both informative and non-informative priors are considered. The sym-
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metric and asymmetric loss functions are also taken into consideration.

The scheme of lower record values is adopted for the data collection, the

thrust of the study is the Bayesian estimation of the power function distribution

based on lower record values. The concept of record values has been discussed

widely in the literature for Bayesian estimation by several authors viz. Soliman

et al. [14]; Tarvirdizade [15]; Nadar and Kizilaslan [11]; Singh et al. [13]. Baklizi,

A. [2] have discussed the likelihood and Bayesian estimation of stress-strength

reliability of generalized exponential distribution using lower record value. Hassan

et al. [7] considered the estimation of stress- strength reliability using lower record

values from exponentiated inverted Weibull distribution. Kumari et al. [9] have

discussed the Bayesian estimation of stress-strength reliability for generalized

inverted exponential distribution using upper record values.

Record values played a measure role in daily life problems concerning data

relating to numerous fields such as economics, weather, sports etc. Chandler

[3] introduced the main idea of record values, inter-record times and started the

statistical study of record values as a model for successive extremes in a sequence

of independently and identically distributed random variables. The record values

can be classified into two categories, lower record values and upper record values.

An observation Xj will be called an upper record value if its value is greater than

all of previous observations i.e.,Xj > Xi for every j > i and it will be called a

lower record value if its value is less than all of previous observations i.e.,Xj < Xi

for every j > i.

A continuous random variable X is said to have a Power function distribu-

tion, if its probability density function (pdf) is

f(x) = θxθ−1; 0 < x < 1, θ > 0,

where θ is shape parameter.

The corresponding cumulative density function (cdf) is

F (x) = xθ; 0 < x < 1, θ > 0.

The reliability function of the power function distribution is given by

R(x) = 1− xθ.

The hazard rate of the power function distribution is given by

h(x) =
θxθ−1

1− xθ
.
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2. Likelihood Function

Let (x(1), x(2), ..., x(m)) be the m lower record values i.e., x(1) ≥ x(2) ≥ . . . ≥
x(m) from a population with pdf f(x) and cdf F (x), then, the likelihood function

is defined as (Arnold et al. [1])

L = f(x(m))
m−1
Π
i=1

f(x(i)

F (x(i)
.

Let (x(1), x(2), ..., x(m)) be the m lower record values from power function

distribution, the likelihood function is

L(x
∼
; θ) =

θmxθ(m)
m
Π
i=1

x(i)

.

3. Bayesian Estimation

In this Section, Bayes estimator are derived using informative and non-

informative priors under both symmetric and asymmetric loss functions. A brief

introduction about loss function is given below:

Squared Error Loss Function

The squared error loss function (SELF) is the simplest symmetric loss func-

tion and it is defined as L(θ̂, θ) ∝ (θ − θ̂)2 where θ̂ is the Bayes estimator of

unknown parameter θ. The Bayes estimator of θ under SELF is θ̂ = E(θ| x
∼
),

where expectation is taken with respect to posterior density.

General Entropy Loss Function

Generalized entropy loss function (GELF) is an asymmetric loss function

and it is suggested by Calabria and Pulcini (1996). This loss function is a gener-

alization of the entropy loss function and defined as

L(θ, θ̂) ∝

(
θ̂

θ

)c

− c ln

(
θ̂

θ

)
− 1,

where c ̸= 0. If c < 0, then, under estimation of the parameter gets more serious

than over estimation and vice-versa. Bayes estimator of θ under GELF is

θ̂ = [E(θ−c| x
∼
)](−1/c).

For prior information, we have considered two types of priors, one is infor-

mative prior and the other is non-informative prior. A brief introduction of prior

distribution is given below:
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Non-Informative Prior

Non-informative priors are used when no prior information or a little infor-

mation is available about the parameter. Here, we have considered, three types of

non-informative priors viz. uniform prior, quasi prior, Jeffreys’ prior as discussed

below:

(i) Uniform Prior: Uniform prior for the parameter θ is given by

g1(θ) ∝ 1.

(ii) Quasi Prior: Quasi prior for the parameter θ is given by

g2(θ) ∝
1

θd
; d ≥ 0, θ > 0.

(iii) Jeffreys’ Prior: Jeffreys’ (1961) provides a method to select a non-

informative prior for the parameter θ and obtained prior from this method

is called Jefferys’ prior. Jefferys’ prior is based on Fisher information cri-

teria of the model. Jefferys’ prior for single parameter θ is defined as

g(θ) ∝
√
I(θ),

where I(θ) = −Eθ

{
∂2lnL(x;θ)

∂θ2

}
, is the Fisher information based on like-

lihood function L(x; θ).

In case of power function distribution, Jeffreys’ prior is

g3(θ) ∝
1

θ
; θ > 0.

Informative Prior

The most common used informative prior is the gamma prior and is given

by

g4(θ) ∝ θa1−1 e−b1θ; θ > 0, a1, b1 > 0.

where a1 and b1 are the hyper-parameters.

Credible Intervals

In Bayesian statistics, a credible interval is an interval in the domain of a

posterior probability distribution. The 100(1 − α)% equal tail credible interval

for exact posterior distribution can be defined as (Eberly and Casella [6])

P (θ < L) =

∫ L

−∞
π(θ| x

∼
) dθ =

α

2
, P (θ > U) =

∫ ∞

U
π(θ| x

∼
) dθ =

α

2

where π(θ| x
∼
) is the posterior density of θ and (L,U) are the lower limit and

upper limit of the credible interval, respectively.
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3.1. Bayesian Estimation of θ, R(t) and h(t) using gamma prior under

SELF and GELF

The posterior distribution of the unknown parameter θ in case of gamma

prior is

π(θ| x
∼
) =

L(x
∼
; θ)g4(θ)∫∞

0 L(x
∼
; θ)g4(θ)dθ

=
θm+a1−1e−b1θxθ(m)

{
b1 + ln

(
1

x(m)

)}m+a1

Γ(m+ a1)
.

Bayes estimator of θ in case of gamma prior under SELF is given by

θ̂GS =

∫ ∞

0
θπ(θ| x

∼
) dθ =

m+ a1

b1 + ln
(

1
x(m)

) .
Bayes estimator of R(t) under SELF is given by

R̂(t)GS =

∫ ∞

0
R(t)π(θ| x

∼
)dθ = 1−

 b1 + ln
(

1
x(m)

)
b1 + ln

(
1

tx(m)

)


m+a1

.

Bayes estimator of h(t) under SELF is given by

ĥ(t)GS =

∫ ∞

0
h(t)π(θ| x

∼
)dθ

=
(m+ a1)

{
b1 + ln

(
1

x(m)

)}m+a1

t

∞∑
j=0

1{
b1 + ln

(
1

tj+1x(m)

)}m+a1+1 .

Bayes estimator of θ under GELF is given by

θ̂GG =

[∫ ∞

0
θ−cπ(θ| x

∼
)dθ

](−1/c)

=
1

b1 + ln
(

1
x(m)

) [Γ(m+ a1 − c)

Γ(m+ a1)

](−1/c)

.

Bayes estimator of R(t) under GELF is given by

R̂(t)GG =

[∫ ∞

0
(1− tθ)−cπ(θ| x

∼
)dθ

](−1/c)

=


{
b1 + ln

(
1

x(m)

)}(m+a1) ∞∑
j=0

(
−c

j

)
(−1)j{

b1 + ln
(

1
tjx(m)

)}(m+a1)


(−1/c)

.
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Bayes estimator of h(t) under GELF is given by

ĥ(t)GG =

[∫ ∞

0

(
θtθ−1

1− tθ

)−c

π(θ| x
∼
)dθ

]−1/c

=


{
b1 + ln

(
1

x(m)

)}(m+a1)

Γ(m+ a1)

∞∑
j=0

(
c

j

)
(−1)jtcΓ(m+ a1 − c){

b1 + ln
(

tc−j

x(m)

)}(m+a1−c)


(−1/c)

.

3.2. Bayesian estimation in case of Quasi Prior, Jeffreys’ Prior and

Uniform Prior under SELF and GELF

Quasi, Jeffreys’ and Uniform priors can be obtained from gamma prior by

putting the particular values of the hyper-parameters as given below:

(i) If a1 = 1− d and b1 = 0, gamma prior provides Quasi prior.

(ii) If a1 = 0 and b1 = 0, gamma prior provides Jeffreys’ prior.

(iii) If a1 = 1 and b1 = 0, gamma prior provides Uniform prior.

Bayes estimators of θ, R(t) and h(t) using Quasi prior under SELF are given by

θ̂QS =
m− d+ 1

ln
(

1
x(m)

) ,

R̂(t)QS = 1−

 ln
(

1
x(m)

)
ln ( 1

tx(m)

)


m−d+1

,

and

ĥ(t)QS =
(m− d+ 1)

[
ln
(

1
x(m)

)](m−d+1)

t

∞∑
j=0

1[
ln ( 1

x(m)t
j+1

)](m−d+2)
.

Bayes estimators of θ, R(t) and h(t) using Quasi prior under GELF are given by

θ̂QG =
1

ln
(

1
x(m)

) [Γ(m− d− c+ 1)

Γ(m− d+ 1)

](−1/c)

,

R̂(t)QG =


{
ln

(
1

x(m)

)}m−d+1 ∞∑
j=0

(
−c

j

)
(−1)j{

ln ( 1
tjx(m)

)}m−d+1


(−1/c)

,



Bayesian Estimation of Power Function Distribution ... 67

and

ĥ(t)QG =


{
ln
(

1
x(m)

)}m−d+1

Γ(m− d+ 1)

∞∑
j=0

(
c

j

)
(−1)jtcΓ(m− d− c+ 1){
ln
(

tc−j

x(m)

)}m−d−c+1


(−1/c)

.

Bayes estimators of θ, R(t) and h(t) using Jeffreys’ prior under SELF are given

by

θ̂JS =
m

ln
(

1
x(m)

) ,
R̂(t)JS = 1−

 ln
(

1
x(m)

)
ln
(

1
tx(m)

)


m

,

ĥ(t)JS =
m
{
ln
(

1
x(m)

)}m

t

∞∑
j=0

1{
ln
(

1
tj+1x(m)

)}m+1 .

Bayes estimators of θ, R(t) and h(t) using Jeffreys’ prior under GELF are given

by

θ̂JG =
1

ln
(

1
x(m)

) [Γ(m− c)

Γ(m)

](−1/c)

,

R̂(t)JG =


{
ln

(
1

x(m)

)}(m) ∞∑
j=0

(
−c

j

)
(−1)j{

ln
(

1
tjx(m)

)}(m)


(−1/c)

,

ĥ(t)JG =


{
ln
(

1
x(m)

)}m

Γ(m)

∞∑
j=0

(
c

j

)
(−1)jtcΓ(m− c){

ln
(

tc−j

x(m)

)}(m−c)


(−1/c)

.

Bayes estimators of θ, R(t) and h(t) using Uniform prior under SELF are given

by

θ̂US =
m+ 1

ln
(

1
x(m)

) ,
R̂(t)US = 1−

 ln
(

1
x(m)

)
ln
(

1
tx(m)

)


m+1

,
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ĥ(t)US =
(m+ 1)

{
ln
(

1
x(m)

)}m+1

t

∞∑
j=0

1{
ln
(

1
tj+1x(m)

)}m+2 .

Bayes estimators of θ, R(t) and h(t) using Uniform prior under GELF are given

by

θ̂UG =
1

ln
(

1
x(m)

) [Γ(m+ 1− c)

Γ(m+ 1)

](−1/c)

.

R̂(t)UG =


{
ln

(
1

x(m)

)}(m+1) ∞∑
j=0

(
−c

j

)
(−1)j{

ln
(

1
tjx(m)

)}(m+1)


(−1/c)

,

ĥ(t)UG =


{
ln
(

1
x(m)

)}(m+1)

Γ(m+ 1)

∞∑
j=0

(
c

j

)
(−1)jtcΓ(m+ 1− c){

ln
(

tc−j

x(m)

)}(m+1−c)


(−1/c)

.

4. Simulation

In this section, a simulation study is conducted to compare the performance

of proposed estimators in terms of risk function and length of credible intervals.

Simulation study is conducted based on the 3000 replications. Three different

sample sizes are considered viz., small (n = 20), medium (n = 30), and large (n =

50). In case of informative prior, the hyper-parameters are chosen as prior mean is

equal to true value of parameter. The risk function and length of credible intervals

of Bayes estimates using informative prior of θ, R(t) and h(t) are presented in

Table 1. Table 2 listed the risk function and length of credible intervals of Bayes

estimates using non-informative prior of θ, R(t) and h(t).

Table 1: Risk function and length of credible intervals of Bayes estimates using

informative prior for θ = 2, t = 0.5.

n SELF GELF c = 2.0 GELF c = −2.0 Length of credible intervals

20 0.0437 0.0266 0.0262 0.1563

θ 30 0.0364 0.0183 0.0196 0.1514

50 0.0313 0.0123 0.0134 0.1267

20 0.0597 0.0361 0.0352 0.1559

R(t) 30 0.0476 0.0282 0.0194 0.1512

50 0.0367 0.0171 0.0132 0.1309

20 0.0410 0.0222 0.0267 0.1873

h(t) 30 0.0360 0.0192 0.0205 0.1814

50 0.0291 0.0161 0.0252 0.1636
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Table 2: Risk function and length of credible intervals of Bayes estimates using

non-informative prior for θ = 2, t = 0.5.

n SELF GELF c = 2.0 GELF c = −2.0 Length of credible intervals

20 0.1914 0.1670 0.1720 0.2571

θ 30 0.1781 0.1614 0.1453 0.2120

50 0.1568 0.1105 0.1323 0.1842

20 0.1945 0.1695 0.1649 0.2194

R(t) 30 0.1831 0.1624 0.1602 0.1911

50 0.1698 0.1473 0.1432 0.1683

20 0.2044 0.1823 0.1928 0.2230

h(t) 30 0.1940 0.1677 0.1715 0.2012

50 0.1541 0.1400 0.1449 0.1743

It can be seen from Tables 1-2, the length of credible intervals decreases as the

sample size increases. It can also be observed that the risk function and length of

credible intervals in case of informative priors smaller than the non-informative

priors.

5. Conclusion

This paper considered the Power function distribution as a life time model.

The Bayesian estimation for the parameter, reliability function and hazard rate

of power function distribution is done in case of lower record values. This study

provides the Bayesian estimation under both informative (gamma) and non-

informative (quasi, uniform, Jeffreys’) priors. Both symmetric (squared error

loss function) and asymmetric (generalized entropy loss function) loss functions

is considered for the Bayesian estimation. Bayes estimators are obtained in closed

form under both informative (gamma) and non-informative (quasi, uniform, Jef-

freys’) priors. A simulation study is also conducted to compare the performance

of proposed estimators.
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