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Abstract

In this paper, a three-parameter new distribution called arctan generalized
inverted exponential distribution is presented. Some mathematical properties
of the distribution such as the shapes of the cumulative density, probability
density, probability density, and hazard rate functions, survival function, quan-
tile function, the kurtosis and skewness measures are established. To estimate
the model parameters, we have employed three well-known estimation methods
namely least-square estimation (LSE), maximum likelihood estimation (MLE),
and Cramer-Von-Mises (CVM) methods. For the illustration purposes we have
considered the two real data sets and goodness-of-fit statistics AIC, BIC, AICC
and HQIC are calculated. It is found that the new distribution performs better
as compared to some existing distribution.
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1. Introduction

Last few decades, most of the writers are paying attention towards the ex-
ponential distribution for its potential in modeling lifetime data, and it has been
found that this distribution has performed remarkably in many applications due
to the existence of closed form solutions to many reliability and survival analysis.
It can easily be justified under the supposition of constant failure rate but in
the practice, the failure rates are not always constant. Hence, haphazard use of
exponential lifetime model seems to be inappropriate and unrealistic. In recent
years, new classes of models have been introduced based on modifications of the
existing classical probability models, Marshall and Olkin (2007). Recently, some
attempts have been made to generate new distributions to extend well known
distributions and at the same time provide great flexibility in modeling data in
practice.
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Several procedures could be employed to form a larger family from an exist-
ing distribution by incorporating extra parameters. So, several classes by adding
one or more parameters to generate new models have been proposed in the sta-
tistical literature, Rinne (2009) and Pham and Lai (2007).

A random variable Y is said to follow exponential distribution with param-
eter X if its cumulative probability distribution (CDF) function is given by

Fz;0)=1—¢e%,2>0,0 > 0. (1.1)

Many generalizations exponential distribution have been found in statistical
literatures to generate more flexible life-time models. Some of them well known
generalizations are as follows.

The modification of exponential distribution was introduced by Smith and
Bain (1975) called exponential power distribution. The generalized exponential
distribution was introduced by (Gupta & Kundu, 1999) which is flexible then
exponential distribution, having increasing and decreasing failure rate hazard
function. The probability density function of generalized exponential distribution
is

a—1
faE (z; o )\):a/\e*/\m{l—e*)‘x} ; (@, A) >0, z>0. (1.2)

Lan and Leemis (2008) has proposed the logistic-exponential distribution.
It has increasing, de-creasing, bathtub (BT)-shaped, and upside-down bathtub
(UBT)-shaped failure rates for various values of the parameters. Another gener-
alization of exponential distribution was introduced by Nadarajah and Haghighi
(2011) and called it as an extension of exponential distribution. Its density can
have decreasing and unimodal shapes, and the hazard rate exhibits increasing and
decreasing shapes. Joshi (2015) has proposed another extension of exponential
distribution called new extended exponential (EEN) distribution having mono-
tonically increasing and constant hazard rate shapes. The continuous random
variable X follows EEN distribution with parameters a and A if its CDF is given
by
F(z) =1 —exp(—aze ) ;2 >0, (o, A) > 0. (1.3)

In this work, we have used the generalized inverted exponential distribution
(GIED) (Dey & Dey, 2014) and this distribution was also used by (Abouam-
moh & Alshingiti, 2009) and (Krishna & Kumar, 2013) in reliability estimation.
Dube et al., (2016) have also used GIED under the progressive first-failure cen-
soring data. Similarly inverse generalized gompertz distribution has introduced
by (Chaudhary & Kumar, 2017). Joshi and Kumar (2018) have introduced the
new distribution called inverse upside down bathtub-shaped hazard function dis-
tribution.
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Gomez-Doniz and Calderon-Ojeda (2015) have introduced the arctan dis-
tribution which was used to model Norwegian fire insurance data. This family
of distribution has been proposed for an underlying Pareto distribution and the
new distribution called Pareto arctan distribution and found that this distribu-
tion provide a good fit as compared to some well-known distributions. The CDF
and PDF of arctan family of distribution with support [a, b] are given by

_arctanfa{l — G(z)}]
arctan(«)

F(r)=1 ;x> 0,a > 0;a,x[a,b] (1.4)
and o
_ 1 ag(x . .
fz) = arctan(a) 1 + [a{l1 — G(w)}]Q’ 2 0,a>0, (1.5)

respectively. Here G(x) and g(z) are the CDF and PDF of any base distribution.

The main objective of this study is to introduce a powerful distribution by
adding just one extra parameter to the generalized inverted exponential distri-
bution to attain a good fit to real data. We investigate the properties of the
proposed distribution and illustrate its applicability. The different sections of
the proposed study are arranged as follows. The new arctan generalized inverted
exponential distribution is introduced and various distributional properties are
discussed in Section 2. To estimate the model parameters, we have employed three
well-known estimation methods namely maximum likelihood estimation (MLE),
least-square estimation (LSE), and Cramer-Von-Mises (CVM) methods in Sec-
tion 3. In Section 4 we have considered two real data sets to analyzed and explore
the applications of the proposed distribution. In this section, we present the ML
estimators of the parameters and approximate confidence intervals also for the
above-mentioned method of estimations, AIC, BIC, AICC and HQIC are calcu-
lated to assess the validity of the arctan generalized exponential model. Finally,
Section 5 ends up with some general concluding remarks.

2. The arctan generalized inverted exponential(ATGIE) distribution:
The generalized inverted exponential distribution was introduced by (Dey &
Dey, 2014) and the CDF and PDF are

oo 0,0) = e e (- NP a2 0,(8,0) > 0. (2.2)

The CDF and PDF of ATGIE distribution with parameters o, 8 and A can
be obtained by substituting the equations (2.1) and (2.2) in (1.4) and (1.5) as
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_ e May?
Fla)=1- a“’ta“ifc(;n(z) V)20, (8,0 > 0 (2.3)

_aBbA x_Qe—A/I(l _e_,\/m)ﬁ—l |
flx) = arctan(a) 4 [q(1 — ¢~ Moy ;x> 0, (a, B,A) > 0. (2.4)

We shall denote X ~ ATGIFE («, 3, ) . Figure 1 demonstrates the graph for
PDF and hazard function for ATGIE distribution for different values of parame-
ters. From Figure 1 (left panel), the density function of the ATGIE distribution
can bear different shapes according to the values of the parameters.

Survival function: The survival function R (¢), which is the probability
of an item surviving up to time ¢, is defined by R (t) = 1 — F'(t). The survival
/reliability function of a ATGIE distribution is given by

arctan[a{(1 — e V*)"}]
arctan(«)

R(z)=1-F(z) = ;x> 0, (a, B,A) > 0. (2.5)

The hazard rate function (HRF): Let ¢ be survival time of a component
or item and the probability that it will not survive for an additional time At
then, hazard rate function is,

f (@)
h(t) =%
0= %
where R(t) is a survival function. Hence let, X ~ ATGIE (o, 3,\) then its
hazard rate function is
A -2 -z 1— Az p-1
h(z) = of —T (1—e )2 . (2.6)
arctanla{(1 — ™M)} 1 4 [a(1 — e M2)]

The Reversed hazard rate function: The reversed hazard rate function is

given by

r(z) = f(2) afX 5-2eM(1 — g—Mw)P!
F(z)  arctan(a) — arctan[o{(1 — e V*)"}] 1 4 [a(1 — e—A/a:)ﬁ]Q .

(2.7)
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Figure 1. Plots of the probability density function(left panel) and
hazard function (right panel), for A=1 and different values of a and S.

Quantile function: The value of the p;;, quantile can be obtained by solving
the following equation,

Q) =F"(p),

and we get quantile function by inverting (2.3) as

1 /677t
Q(p) =-A [log {1 - [a tan {(1 — ) arctana}] }] 0<p<1l. (238)

For the generation of the random numbers of the ATGIE distribution, we suppose

simulating values of random variable X with the CDF (2.3). Let U denote a
uniform random variable in (0,1), then the simulated values of X can be obtained
by

1 /877!
x=—A [log {1 - [a tan {(1 — u) arctana}} }] 0<u< 1. (2.9)

Skewness and Kurtosis: The skewness and kurtosis measures are used
in statistical analyses to characterize a distribution or a data set. The Bowley’s
skewness measure based on quartiles is given by

g, — Q075 +Q(0.25) 29 (0.5) (2.10)

Q(0.75) — Q (0.25)
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and the Moors’s kurtosis measure based on octiles (Moors, 1988)) is given by

Q (0.875) — Q (0.625) + Q (0.375) — Q (0.125)
Q (0.75) — Q (0.25) ’

where the @ (.) is the quantile function.The skewness and kurtosis measures based
on quantiles like Bowley’s skewness and Moors’s kurtosis have a number of ad-
vantages compared to the classical measures of skewness and kurtosis, e.g. they
are less sensitive to outliers and they exist for the distributions even without
defined the moments.

K, = (2.11)

Some useful expansion of ATGIE distribution:

Here we have expand the CDF and PDF of ATGIE distribution by using the
following series expansions

2 21+ 1
=0
o
_ (=1)"z"
T _
=)

The CDF of ATGIE distribution defined in (2.3) is

_ arctanfa(l — e_’\/m)ﬁ]

Fla)=1 arctan(a) ;o2 0,(a, B,4) >0
- 1 T~ (L BT @HD
=1 arctan(a) [2 ; 2% + 1{0‘(1 e ) } (2.12)
= w+ ZZdike”\k/x
i=0 k=0
where

g D) e CHY g (204 1)~ 1
T2+ 1) arctan(a)( B2i4+1)—1 )

and
T

~ 2arctan(a)”
Differentiating (2.12) with respect to z we get PDF of ATGIE distribution as,

w=1

o0

= — x)‘k — x —2 —Ak/x
Fla)y= 3> dpe 20 = NN dn a2 MW (2.13)
=0 k=0

; x?

=0 k=0
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where d7, = dj X Ak.
Moments : The r** moment about origin of ATGIE distribution can be written
as

py =E(X")

oo

" f (z) dx

I
S—

0o 00 00

_ / sz* 2’ 2 —)\k/a:dx
=0 k

0

o0 [o.¢]
_ Z d; INOREED
1=0 k=0 [)\k
oo
where [ 2"e”%dx = % is a standard gamma integral.
0

Moment Generating Function (mgf): Let X be a random variable, then the
mgf of X can be defined as

l

Mx (8 E(etX)zl;j,u;
A L BT (1 =)
:Zzzdmﬁw'

1=0 i=0 k=0
Conditional Moments: The conditional moments of random variable X that

follows ATGIE distribution can be expressed as
1 oo
E(X”|X>:U):w/ 2" f(x) dx
1 * > n—2 _—\k/x
:S(x)zzdik/x T e dx

1l S e v (L= n, Ak)
_S(x)zzdik k)"

oo
. . . _ Lbt) - .
where S(z) is survival function and [ z% be dy = 7(‘;;“’ ) is lower incomplete
t

gamma function.

Order Statistics for ATGIE distribution:
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Let Xj., represents the k* order statistic of X1, ..., X,, and fr.n indicates
PDF of k" then

fk:n (J:) =

= 1% S @ F @) F )

Tk 1>n<‘ ni (n j k) P

j=1

.

Using CDF and PDF defined in (2.12) and (2.13) we get

n—k 0o 0 Jjtk—1
o (x _ZZDW —Ak/xZ(n;k‘> UJ—l—ZZdike_)\k/x]

=0 k=0 j=1 i=0 k=0

Where Dzk m X d
3. METHODS OF ESTIMATION

The object of estimation is to evaluate a model parameter value based on
sample information. The estimation theory deals with the basic problem of infer-
ring some relevant features of a chance experiment centered on the observation of
the experiment outcomes. There are so many methods which are used to evaluate
values of parameters. Three kinds of parameter estimation methods have been
considered, such as MLE, LSE, and the Cramer-von Mises (CVM) methods.

(a) Maximum Likelihood Estimation:

In this section, we have illustrated the maximum likelihood estimators (MLE’s)
of the ATGIE(a, 8, A) distribution. Let x = (x1,...,2,) be the observed val-
ues of size n from ATGIE(a, 8, A) then the likelihood function for the parameter
vector ¥ = (a, 3, )\)T can be written as,

_ [ apx " & x;ze*A/wi(l_ew\/xi)ﬁ
L(\P)_< )) H

arctan(« 14 [a(1 - 6,)\/12.)5]2

It is easy to deal with log-likelihood function as,

-1

(o, B, N|z) = nln (aBA) — nin{arctan(a)} — 2 sz - )\Zafl

(3.1)

—(8— 1)zn:m(1 — e M) Zln{l + [a(l — e ™) ]2}
=1
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The elements of the score function B (V) = (B, Bg, B)) are obtained as

o _n_ n 2az (L—e Vo)™
8a [0 arctan( ) 1 + O£2 i1 1 + (1 - e—)\/xi)ﬁ]z]
ol n (1 e_’\/f“)w In(1 — e_’\/””)
— =4+ Z In(1 )‘/’31 —a? Z 5
05~ B T 14 [l — e M) (3:2)
o n K = e M
o -1 _(3_-1 _c
ENDY Z;x (8 ); ai(1 — e=Mai)

(1 - e_)‘/xi)wile_”xi
2
=10 14 [a(l— e—/\/xi)’g]

Equating B,, Bg and B) to zero and solving these non-linear equations si-

multaneously gives the MLE ¥ = (&,B, 5\) of ¥ = (a, f, )\)T. These equations
cannot be solved analytically and by using the computer software R, Mathemat-
ica, Matlab, or any other programs and Newton-Raphson’s iteration method, one
can solve these equations. Using the asymptotic normality of MLEs, approximate
100(1 — v)% confidence intervals for «, 8 and A can be constructed as,

& & 2, 94/ var(a), B+ 2y 2/ var(f) and A + z,y/g\/var(;\), (3.3)

where z, /5 is the upper percentile of standard normal variate.

(b) Least-Square Estimation (LSE)Method:
The least-square estimators of the unknown parameters o, 5 and A of ATGIE

—2a°28

distribution can be obtained by minimizing

n

. 2
M (a8 = 3 [FOX) - ] (3.4
=1

with respect to (w.r.t.) o, and A, (Swain et al., 1988).

From a distribution function F'(.), consider random sample be denoted by
{X1,..., Xy} with sample size is n where F'(X;)) represents the distribution func-
tion of the random variables ordered Xy, X(ay, ..., X(,). Then LSE (&,B~ and 5\)

is acquired with minimization of

(3.5)

n _ B .

arctan[a(1 — e M%®)"] i
M(X;a,80) =3 [1- -

(X50,6,2) Zz; [ arctan(a) n+1
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with respect to «, 8 and A. Differentiation of (3.5) with respect to «, 5 and
A yields,

:_22[ arctan[aT (z;)] i ]X

arctan(a) n+1
T (z;) arctan[aT (x;)]
(2{T (x;)}2 + 1) (a2 + 1) arctan?(«)

oM Z": [1 arctan[aT (z ())] i T (z¢;)) In(1 —e” M)
B arctan(a — arctan(a) n+1 (a?{T (x(z )} +1)
M B 203 i [1 arctan|[a/T (ﬂU(z’))] ) (11— e MG >) */\/Z(i)

_ — 2
o\ arctan(«) arctan (o) Cn+l x(i)(az{T (x(z‘))} +1)

where

T () = (1 — e Mo@)P,
The LSE estimators can be obtained by solving

oM (9M oM

simultaneously.
Likewise, the weighted LSEs can be found with minimization w.r.t. «, 8 and

A

. 2
M(X;a,3,)) Zw[ (X)) — il]

The weights w; are

1 (n+1)*(n+2)
w; = = .
" Var(X() i(n—i+1)
Hence, the weighted LSEs of «, 8 and A can be found respectively by mini-
mizing following function w.r.t. «, 8 and A.

Zn: (n+1)*(n+2) |, _ arctano(l - M)’

M (X; A) = B -
(X;a,8,)) i(n—i+1) arctan(ca) n+1

=1

(¢) Cramer-Von-Mises estimation (CVME):
The CVM estimators for a, 8 and A are obtained by minimization of
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n

2 — 112
A(X « /Bu +Z|: i)‘aaﬁa)‘) - m :|

n
12n+z;

Differentiating (3.6) with respect to «, 5 and \ we get,

B arctan[oT (z¢)] 20 —1
o _22 ! arctan(«) 2 ]
T (z:) B arctan[aT (l‘(i))]
(a2{T (x(,-))}Q +1) (a?+ larctan®(a)

0A 2 -
dB  arctan(a) Z

=1

2
arctan[a(1 — e*)‘/%))ﬁ] 2i—1
arctan(a) 2n |

arctan[aT (z(;y)] 20 —1

arctan(«) 2n

T (z(;) In(1 — e~ M)
(@{T (@)} + 1)

1=

% ) _% zn: . arctan[aT (x(z))] - 2% — 1 (1 - e*/\/x(i))ﬁflef)\/x(i)
O\ arctan(a) 4 - arctan (o) 2n z(y(a*{T (x(i))}2+1)

where T (q:(i)) =(1- e N )8, The CVM estimators can be found by solving

0A 8A 8A

simultaneously.
4. Data Analysis: Application

In this section, we illustrate the applicability of arctan generalized inverted
exponential distribution using two real datasets used by earlier researchers. To
illustrate the goodness of fit of the ATGIE distribution, we have select some well
known distribution for comparison purpose which are listed below:

(i) Generalized Exponential Extension (GEE) distribution: The probabil-
ity density function of GEE introduced by (Lemonte, 2013) having up-
side down bathtub-shaped hazard function distribution with parameters

(o, B, A) is

fape (T a,8,0) = afX (1+Ax)* ' exp {1l — (1 + \z)*}
[1— exp{l—(1+X)*}"' ; 2>0
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(ii) Generalized Exponential (GE) distribution: The probability density func-
tion of generalized exponential distribution (Gupta & Kundu, 1999) is.

a—1
far (z; a A):a)\ef)‘m{l—eﬁ‘x} ;i (o, A) >0, 2> 0.

(iii) Generalized Rayleigh distribution The probability density function of
Generalized Rayleigh (GR) distribution (Kundu & Raqab, 2005) is

a—1
far (x; 0, A) =20 X x e_(w2{1 - e‘(*’”)2} ;x>0

Here o > 0 and A > 0 are the shape and scale parameters respectively.

(iv) Modified Weibull (MW) The modified Weibull (MW) distribution was
introduced by (Lai et al., 2003) with three parameters a > 0,8 > 0 and
A > 0. The probability density function (pdf) is

fauw (@) = a (A + Bz) 2 Lexp(Br — ax?e® ;2 > 0

(v) Weibull Extension (WE) Model: The probability density function of
Weibull extension (WE) distribution (Tang et al., 2003) with three pa-
rameters (a > 0,5 >0, > 0) is

fwe(z;a,B,\) = \3 (g)ﬁ—l exp (g)ﬁ

exp{—)\a <exp(2)ﬂ—1>} )

Dataset I: The data below are from the tensile strength of 69 observations

of failure stresses of single carbon fibers of length 50 mm,(Bader & Priest, 1982).

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,
2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554,
2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726,
2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012,
3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585

We have presented the MLEs directly by using optim() function (R Core

Team, 2015) and Rizzo (2008) by maximizing the likelihood function (3.1). We
have obtained & = 1.3544(0.9132), § = 124.7936(4.1417), A = 11.8788(0.6331)
and corresponding value of log-likelihood is -49.5653. Using the method described
in Section 3, we can construct the approximate confidence intervals(ACI) based
on MLE’s. Table 1 shows the MLE’s with their standard errors(SE) and 95%
confidence intervals for «;, 8 and A. In Table 1 we have presented the MLE’s with
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their standard errors (SE) and 95% asymptotic confidence intervals(ACI) for a, 8
and A.

In Figure 2 we have displayed the graph of profile log-likelihood functions of
ML estimates of «, 8 and A. We have noticed that ML estimates of «, § and A
exist and can be obtained uniquely.
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Figure 2. Profile log-likelihood functions of «, 8 and A.

To evaluate the goodness of fit of a given distribution we generally use the
PDF and CDF plot. To get the additional information we have to plot Q-Q and
P-P plots. In particular, the Q-Q plot may provide information about the lack-of-
fit at the tails of the distribution, whereas the P-P plot emphasizes the lack-of-fit,

(Kumar & Ligges 2011). From Figure 3 we have shown that the ATGIE model
fits the data very well.
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Figure 3. PP plot(left panel) and QQ plot(right panel).
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Dataset II: For the illustration, we consider the another data set to fit
our model on the tensile strength of 65 observations of failure stresses of single
carbon fibers of length 50 mm (Bader & Priest, 1982). The data set is also used
by Muhammad & Liu (2019). The data is as follows:

1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807,

1.812, 1.840, 1.852, 1.852, 1.862, 1.864, 1.931, 1.952, 1.974, 2.019,

2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172, 2.180, 2.194,

2.211, 2.270, 2.272, 2.280, 2.299, 2.308, 2.335, 2.349, 2.356, 2.386,

2.390, 2.410, 2.430, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577,

2.593, 2.601, 2.604, 2.620, 2.633, 2.670, 2.682, 2.699, 2.705, 2.735,
2.785, 3.020, 3.042, 3.116, 3.174

We have obtained the MLEs with their standard errors (SE) in parenthe-
sis of ATGIE distribution as & = 0.4811(1.1763), 3 = 274.1557(3.0760), A =
13.2370(0.6467) and corresponding value of log-likelihood is -34.7884. In Figure
5 we have displayed the graph of profile log-likelihood functions of ML estimates
of a, 5 and A\. We have noticed that ML estimates of «, 5 and A exist and can be
obtained uniquely.

1.0 4
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0.6 25
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Figure 5. The P-P plot (left panel) and Q-Q plot (right panel).

By using MLE method we estimate the parameter of each of these distribu-
tions. For the goodness of fit purpose we use log-likelihood (l(é)) where 0 =
(&,3,\) to compute Akaike information criterion (AIC), Bayesian information
criterion (BIC), Corrected Akaike Information criterion (CAIC) and Hannan-
Quinn information criterion (HQIC), statistic to select the best model among
selected models. The expressions to calculate AIC, BIC, CAIC and HQIC are
listed below:
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AIC = —21(0) + 2k,

BIC = —21(0) + klog (n) ,

2% (k +1)
n—k—1"
HQIC = —21() + 2k1log [log (n)] ,

CAIC = AIC +

where k is the number of parameters and n is the size of the sample in
the model under consideration. Further, in order to evaluate the fits of the AT-
GIE distribution with some selected distributions we have taken the Kolmogorov-
Smirnov (KS), the Anderson-Darling (W) and the Cramer-Von Mises (A?) statis-
tic. These statistics are widely used to compare non-nested models and to illus-
trate how closely a specific CDF fits the empirical distribution to the given data
set. These statistics are calculated as

o
KSzmax(di—Z ,Z—di>7

1<i<n n n
R
W=-n-— Z} (2i — 1) [Ind; + In (1 — dpy1-5)],
1 " [(2i—1) 2
A? = — —d;
12n + ; [ 2n } ’

where d; = CDF (x;) ; the x;’s being the ordered observations, (D’Agostino and
Stephens,1986).

For the assessment of potentiality of the proposed model we have calculated
the Akaike information criterion (AIC), Bayesian information criterion (BIC),
Corrected Akaike information criterion (CAIC) and Hannan-Quinn information
criterion (HQIC) and these are presented in Table 2.

Table 1
Estimated parameters, log-likelihood AIC and KS(Data set-I

Method & Ié] A 11 AIC KS(p-value)

MLE 1.3544 124.7936 11.8788 -49.5653 105.1306 0.0378(0.9999)
LSE 4.3231 47.1571 8.2149 -51.8238 109.6476 0.0377(0.9999)
CVME 23575 82.2636 10.2617 -50.0926 106.1853 0.0388(0.9999)

The Histogram and the density function of fitted distributions and Empirical
distribution function with estimated distribution function of ATGIE, generalized
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Gompertz (GG), generalized exponential extension (GEE), exponential extension
(EE), Weibull and EEP distributions are presented in Figure 4.
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Figure 6. The Histogram and the PDF of fitted distributions(first column) and
the fitted qunatiles and sample quantiles(second column) of datasets I and II,
respectively for estimation methods(MLE, LSE and CVM).

To compare the goodness-of-fit of the ATGIE distribution with other com-
peting distributions we have presented the value of Kolmogorov-Smirnov (KS),
the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics. These
three statistics are widely used to compare non-nested models and to illustrate
how closely a specific CDF fits the empirical distribution of a given data set.
From Table 3 the result shows that the ATGIE distribution has the minimum
value of the test statistic and higher p-value hence we conclude that the ATGIE
distribution gets quite better fit and more consistent and reliable results from
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others taken for comparison.

Table 2
Estimated parameters, log-likelihood AIC and KS(Data set-1I
Method & 3 A 11 AIC  KS(p-value)

MLE 0.4811 274.1557 13.2370 -34.7884 75.5767 0.0634(0.9565)
LSE 1.5978 114.4953 10.5397 -35.8880 77.7760 0.0580(0.9809)
CVME 1.6213 126.4087 10.7511 -35.6623 77.3246 0.0604(0.9716)

To evaluate the goodness of fit of a given distribution we generally use the
PDF and CDF plot. To get the additional information we have to plot Q-Q
and P-P plots. In particular, the Q-Q plot may provide information about the
lack-of-fit at the tails of the distribution, whereas the P-P plot emphasizes the
lack-of-fit. From Figure 6 we have shown that the ATGIE model fits the data
very well.

For the assessment of potentiality of the proposed model we have calculated
the Akaike information criterion (AIC), Bayesian information criterion (BIC),
Corrected Akaike information criterion (CAIC) and Hannan-Quinn information
criterion (HQIC) which are presented in Table 3 and Table 4 for date sets I and
I1.

Table 3
Log-likelihood(LL), AIC, BIC, CAIC and HQIC(Dataset-I)
Model -LL AIC BIC CAIC HQIC

ATGIE -49.5653 105.1306 111.8329 105.4999 107.7897
MW -49.6017 105.2033 111.9056 105.5725 107.8623
GEE -49.6465 105.2930 111.9954 105.6623 107.9521

GR -50.6292 105.2584 109.7266 105.4402 107.0311
WE -50.7239 107.4479 114.1502 107.8171 110.1069
GE -54.6205 113.2409 117.7091 113.4227 115.0136

For the both datasets we have presented the Histogram and the density func-
tion of fitted distributions and Empirical distribution function with the estimated
distribution function of ATGIE and some selected distributions are presented in
Figure 7.
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Table 4
Log-likelihood(LL), AIC, BIC, CAIC and HQIC

Model -LL AIC BIC CAIC  HQIC
ATGIE -34.7884 75.5767 82.0999 75.9702 78.1505
GEE -35.0445 76.0889 82.6121 76.4824 78.6627
MW -35.4552  76.9103 83.4335 77.3038 79.4841

WE -35.4760 76.9521 83.4753 77.3455 79.5259
GR -35.7674 75.5349 79.8836 75.7284 77.2507
GE -38.3657 80.7315 85.0803 80.9250 82.4474
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Figure 7. The Histogram and the density function of fitted distributions and
Empirical distribution function with estimated distribution function for
Dataset-I(left panel) and for Dataset-II(right panel).

To compare the goodness-of-fit of the ATGIE distribution with other com-
peting distributions we have presented the value of Kolmogorov-Smirnov (KS),
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the Anderson-Darling (W) and the Cramer-Von Mises (A2) statistics in Table 5
and Table 6. It is observed that the ATGIE distribution has the minimum value
of the test statistic and higher p-value for the both datasets I and II, thus we
conclude that the ATGIE distribution gets quite better fit and more consistent
and reliable results from others taken for comparison.

Table 5
The goodness-of-fit statistics and their corresponding p—value (Dataset-I)

Model KS(p-value) AD(p-value)  CVM(p-value)
ATGIE 0.0378(0.9999) 0.0142(0.9998) 0.1406(0.9992)
MW 0.0542(0.9873) 0.0326(0.9677) 0.2717(0.9577)
GEE  0.0559(0.9823) 0.0413(0.9279) 0.2924(0.9436)
GR 0.0658(0.9264) 0.0625(0.8000) 0.4417(0.8061)
WE  0.0647(0.9348) 0.0568(0.8357) 0.4431(0.8046)
GE 0.0949(0.5629) 0.1603(0.3603) 1.1235(0.2983)

The goodness-of-fit statistics and their corresponding p—value (Dataset-1I)

Table 6

Model KS(p-value)  AD(p-value)  CVM/(p-value)
ATGIE 0.0634(0.9565) 0.0284(0.9819) 0.2031(0.9896)
GEE  0.0721(0.8876) 0.0537(0.8550) 0.3239(0.9189)
MW 0.0538(0.9918) 0.0243(0.9915) 0.2696(0.9590)
WE  0.0560(0.9869) 0.0260(0.9880) 0.2787(0.9531)
GR  0.0814(0.7824) 0.0714(0.7446) 0.4282(0.8199)
GE 0.0966(0.5783) 0.1290(0.4614) 0.8200(0.4663)
Conclusion

In this paper, a continuous probability distribution called arctan generalized
inverted exponential distribution.
ties of the ATGIE distribution are presented such as the shapes of the proba-
bility density, cumulative density and hazard rate functions, survival function,

Some mathematical and statistical proper-

quantile function, the skewness, and kurtosis measures are derived and estab-
lished and found that the proposed model has flexible hazard rate function. The
model parameters are estimated by using three well-known estimation methods
namely maximum likelihood estimation (MLE), least-square estimation (LSE),
and Cramer-Von-Mises (CVM) methods and it is found that MLEs are quite good
than LSEs and CVMs. Two real datasets is considered to explore the applicabil-
ity and suitability potentiality of the proposed distribution and found that the
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proposed model is quite better than other lifetime model taken into considera-
tion. We hope this model may be an alternative in the field of reliability analysis,
applied statistics and probability theory.

10.

Ram Suresh Yadav

email : yadav.ram2345Qgmail.com
Vijay Kumar

email : vkgkp@Qrediffmail.com
Department of Mathematics & Statistics

DDU Gorakhpur University, Gorakhpur

References

. Abouammoh, A.M. & Alshingiti, A.M. : Reliability estimation of gen-

eralized inverted exponential distribution. Journal of Statistical Computation
and Simulation, 79(11) (2009), 1301-1315.

. Bader, M. G., & Priest, A. M. : Statistical aspects of fibre and bundle

strength in hybrid composites. Progress in science and engineering of compos-
ites, 1129-1136, (1982).

. Birnbaum, Z.W., & Saunders, S.C. : Estimation for a family of life

distributions with applications to fatigue, Journal of Applied Probability, 6
(1969), 328-347.

. Chaudhary, A.K.& Kumar, V. : Inverse Generalized Gompertz Distribu-

tion with Properties and Applications, Journal of National Academy of Math-
ematics India, 31 (2017), 01-15.

. Dey, S. & Dey, T. : Generalized inverted exponential distribution: different

methods of estimation. American Journal of Mathematical and Management
Sciences, 33(3) (2014), 194-215.

. Dube, M., Krishna, H. & Garg, R. : Generalized inverted exponen-

tial distribution under progressive first-failure censoring. Journal of Statistical
Computation and Simulation, 86(6) (2016), 1095-1114.

El-Gohary, A., Alshamrani, A., & Al-Otaibi, A. N. : The generalized
Gompertz distribution. Applied Mathematical Modelling, 37(1-2) (2013), 13-
24.

. Gomez-Doniz, E., & Calderon-Ojeda, E. : Modelling insurance data

with the Pareto ArcTan distribution. ASTIN Bulletin: The Journal of the
TAA, 45(3) (2015), 639-660.

. Gupta, R. D., & Kundu, D. : Theory & methods: Generalized exponential

distributions. Australian & New Zealand Journal of Statistics, 41(2) (1999),
173-188.

Joshi, R. K & Kumar, V. : Inverse Upside Down Bathtub-shaped Hazard
function Distribution: Theory and Applications, Journal of National Academy
of Mathematics India, 32 (2018), 06-20.



92

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Ram Suresh Yadav & Vijay Kumar

Krishna, H. & Kumar, K. : Reliability estimation in generalized inverted
exponential distribution with progressive type II censored sample. Journal of
Statistical Computation and Simulation, 83(6) (2013), 1007-1019.

Kumar, V. and Ligges, U. : (2011). reliaR: A package for some probability
distributions, http://cran.r-project.org/web/packages/reliaR /index.html.
Kundu, D., and Raqgab, M.Z. : Generalized Rayleigh Distribution: Dif-
ferent Methods of Estimation, Computational Statistics and Data Analysis, 49
(2005), 187-200.

Lan, Y., & Leemis, L. M. : The logistic exponential survival distribution.
Naval Research Logistics (NRL), 55(3) (2008), 252-264.

Lai, C., Xie, M., Murthy, D. : A modified weibull distribution. IEEE
Trans Reliab 52 (2003), 33-37.

Lemonte, A. J.: A new exponential-type distribution with constant, decreas-
ing, increasing, upside-down bathtub and bathtub-shaped failure rate function.
Computational Statistics & Data Analysis, 62 (2013), 149-170.

Marshall, A. W. and Olkin, I. : Life Distributions: Structure of Nonpara-
metric, Semiparametric and Parametric Families, Springer, New York (2007).
Ming Hui, E. G. : Learn R for applied statistics. Springer, New York (2019).
Moors, J. J. A. : A quantile alternative for kurtosis. Journal of the Royal
Statistical Society: Series D (The Statistician), 37(1) (1988), 25-32.

Murthy, D.N.P., Xie, M. and Jiang, R. : Weibull Models, Wiley, New
York (2003).

Nadarajah, S., & Haghighi, F. : An extension of the exponential distri-
bution. Statistics, 45(6) (2011), 543-558.

Nelson, W., & Doganaksoy, N. : Statistical analysis of life or strength data
from specimens of various sizes using the power-(log) normal model. Recent
Advances in Life-Testing and Reliability, 377-408 (1995).

Pham, H., & Lai, C. D. : On recent generalizations of the Weibull distri-
bution. IEEE transactions on reliability, 56(3) (2007), 454-458.

R Core Team : (2018). R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/.

Rinne, H. : The Weibull distribution: A Handbook CRC Press. Boca Raton,
(2009).

Smith, R. M., & Bain, L. J. : An exponential power life-testing distribution.
Communications in Statistics-Theory and Methods, 4(5) (1975), 469-481.
Swain, J. J., Venkatraman, S. & Wilson, J. R. : Least-squares estimation
of distribution functions in Johnson?s translation system. Journal of Statistical
Computation and Simulation, 29(4) (1988), 271-297.

Tang, Y., Xie, M., & Goh, T. N. : Statistical analysis of a Weibull
extension model. Communications in Statistics-Theory and Methods, 32(5)
(2003), 913-928.



	References



