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Abstract

In this paper, a three-parameter new distribution called arctan generalized

inverted exponential distribution is presented. Some mathematical properties

of the distribution such as the shapes of the cumulative density, probability

density, probability density, and hazard rate functions, survival function, quan-

tile function, the kurtosis and skewness measures are established. To estimate

the model parameters, we have employed three well-known estimation methods

namely least-square estimation (LSE), maximum likelihood estimation (MLE),

and Cramer-Von-Mises (CVM) methods. For the illustration purposes we have

considered the two real data sets and goodness-of-fit statistics AIC, BIC, AICC

and HQIC are calculated. It is found that the new distribution performs better

as compared to some existing distribution.
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1. Introduction

Last few decades, most of the writers are paying attention towards the ex-

ponential distribution for its potential in modeling lifetime data, and it has been

found that this distribution has performed remarkably in many applications due

to the existence of closed form solutions to many reliability and survival analysis.

It can easily be justified under the supposition of constant failure rate but in

the practice, the failure rates are not always constant. Hence, haphazard use of

exponential lifetime model seems to be inappropriate and unrealistic. In recent

years, new classes of models have been introduced based on modifications of the

existing classical probability models, Marshall and Olkin (2007). Recently, some

attempts have been made to generate new distributions to extend well known

distributions and at the same time provide great flexibility in modeling data in

practice.
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Several procedures could be employed to form a larger family from an exist-

ing distribution by incorporating extra parameters. So, several classes by adding

one or more parameters to generate new models have been proposed in the sta-

tistical literature, Rinne (2009) and Pham and Lai (2007).

A random variable Y is said to follow exponential distribution with param-

eter λ if its cumulative probability distribution (CDF) function is given by

F (x; θ) = 1− e−θx ;x > 0, θ > 0. (1.1)

Many generalizations exponential distribution have been found in statistical

literatures to generate more flexible life-time models. Some of them well known

generalizations are as follows.

The modification of exponential distribution was introduced by Smith and

Bain (1975) called exponential power distribution. The generalized exponential

distribution was introduced by (Gupta & Kundu, 1999) which is flexible then

exponential distribution, having increasing and decreasing failure rate hazard

function. The probability density function of generalized exponential distribution

is

fGE (x; α, λ) = α λ e−λ x
{
1− e−λ x

}α−1
; (α, λ) > 0, x > 0. (1.2)

Lan and Leemis (2008) has proposed the logistic-exponential distribution.

It has increasing, de-creasing, bathtub (BT)-shaped, and upside-down bathtub

(UBT)-shaped failure rates for various values of the parameters. Another gener-

alization of exponential distribution was introduced by Nadarajah and Haghighi

(2011) and called it as an extension of exponential distribution. Its density can

have decreasing and unimodal shapes, and the hazard rate exhibits increasing and

decreasing shapes. Joshi (2015) has proposed another extension of exponential

distribution called new extended exponential (EEN) distribution having mono-

tonically increasing and constant hazard rate shapes. The continuous random

variable X follows EEN distribution with parameters α and λ if its CDF is given

by

F (x) = 1− exp(−αxe−λ/x) ;x > 0, (α, λ) > 0. (1.3)

In this work, we have used the generalized inverted exponential distribution

(GIED) (Dey & Dey, 2014) and this distribution was also used by (Abouam-

moh & Alshingiti, 2009) and (Krishna & Kumar, 2013) in reliability estimation.

Dube et al., (2016) have also used GIED under the progressive first-failure cen-

soring data. Similarly inverse generalized gompertz distribution has introduced

by (Chaudhary & Kumar, 2017). Joshi and Kumar (2018) have introduced the

new distribution called inverse upside down bathtub-shaped hazard function dis-

tribution.
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Gomez-Doniz and Calderon-Ojeda (2015) have introduced the arctan dis-

tribution which was used to model Norwegian fire insurance data. This family

of distribution has been proposed for an underlying Pareto distribution and the

new distribution called Pareto arctan distribution and found that this distribu-

tion provide a good fit as compared to some well-known distributions. The CDF

and PDF of arctan family of distribution with support [a, b] are given by

F (x) = 1− arctan[α{1−G(x)}]
arctan(α)

;x ⩾ 0, α > 0;α, x[a, b] (1.4)

and

f(x) =
1

arctan(α)

αg(x)

1 + [α{1−G(x)}]2
;x ⩾ 0, α > 0, (1.5)

respectively. Here G(x) and g(x) are the CDF and PDF of any base distribution.

The main objective of this study is to introduce a powerful distribution by

adding just one extra parameter to the generalized inverted exponential distri-

bution to attain a good fit to real data. We investigate the properties of the

proposed distribution and illustrate its applicability. The different sections of

the proposed study are arranged as follows. The new arctan generalized inverted

exponential distribution is introduced and various distributional properties are

discussed in Section 2. To estimate the model parameters, we have employed three

well-known estimation methods namely maximum likelihood estimation (MLE),

least-square estimation (LSE), and Cramer-Von-Mises (CVM) methods in Sec-

tion 3. In Section 4 we have considered two real data sets to analyzed and explore

the applications of the proposed distribution. In this section, we present the ML

estimators of the parameters and approximate confidence intervals also for the

above-mentioned method of estimations, AIC, BIC, AICC and HQIC are calcu-

lated to assess the validity of the arctan generalized exponential model. Finally,

Section 5 ends up with some general concluding remarks.

2. The arctan generalized inverted exponential(ATGIE) distribution:

The generalized inverted exponential distribution was introduced by (Dey &

Dey, 2014) and the CDF and PDF are

G(x;β, λ) = 1− (1− e−λ/x)β ;x ⩾ 0, (β, λ) > 0. (2.1)

g(x;β, λ) =
βλ

x2
e−λ/x(1− e−λ/x)β−1 ;x ⩾ 0, (β, λ) > 0. (2.2)

The CDF and PDF of ATGIE distribution with parameters α, β and λ can

be obtained by substituting the equations (2.1) and (2.2) in (1.4) and (1.5) as
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F (x) = 1− arctan[α(1− e−λ/x)
β
]

arctan(α)
;x ⩾ 0, (α, β, λ) > 0 (2.3)

f(x) =
αβλ

arctan(α)

x−2e−λ/x(1− e−λ/x)
β−1

1 + [α(1− e−λ/x)
β
]
2 ;x ⩾ 0, (α, β, λ) > 0. (2.4)

We shall denoteX ∼ ATGIE (α, β, λ) . Figure 1 demonstrates the graph for

PDF and hazard function for ATGIE distribution for different values of parame-

ters. From Figure 1 (left panel), the density function of the ATGIE distribution

can bear different shapes according to the values of the parameters.

Survival function: The survival function R (t), which is the probability

of an item surviving up to time t, is defined by R (t) = 1 − F (t). The survival

/reliability function of a ATGIE distribution is given by

R(x) = 1− F (x) =
arctan[α{(1− e−λ/x)

β}]
arctan(α)

;x ⩾ 0, (α, β, λ) > 0. (2.5)

The hazard rate function (HRF): Let t be survival time of a component

or item and the probability that it will not survive for an additional time ∆t

then, hazard rate function is,

h (t) =
f (t)

R (t)
,

where R(t) is a survival function. Hence let, X ∼ ATGIE (α, β, λ) then its

hazard rate function is

h(x) =
αβλ

arctan[α{(1− e−λ/x)
β}]

x−2e−λ/x(1− e−λ/x)
β−1

1 + [α(1− e−λ/x)
β
]
2 . (2.6)

The Reversed hazard rate function: The reversed hazard rate function is

given by

r(x) =
f(x)

F (x)
=

αβλ

arctan(α)− arctan[α{(1− e−λ/x)
β}]

x−2e−λ/x(1− e−λ/x)
β−1

1 + [α(1− e−λ/x)
β
]
2 .

(2.7)
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Figure 1. Plots of the probability density function(left panel) and

hazard function (right panel), for λ=1 and different values of α and β.

Quantile function: The value of the pth quantile can be obtained by solving

the following equation,

Q (p) = F−1 (p) ,

and we get quantile function by inverting (2.3) as

Q(p) = −λ

[
log

{
1−

[
1

α
tan {(1− u) arctanα}

]1/β}]−1

; 0 < p < 1. (2.8)

For the generation of the random numbers of the ATGIE distribution, we suppose

simulating values of random variable X with the CDF (2.3). Let U denote a

uniform random variable in (0,1), then the simulated values of X can be obtained

by

x = −λ

[
log

{
1−

[
1

α
tan {(1− u) arctanα}

]1/β}]−1

; 0 < u < 1. (2.9)

Skewness and Kurtosis: The skewness and kurtosis measures are used

in statistical analyses to characterize a distribution or a data set. The Bowley’s

skewness measure based on quartiles is given by

Sk =
Q (0.75) +Q (0.25)− 2Q (0.5)

Q (0.75)−Q (0.25)
, (2.10)
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and the Moors’s kurtosis measure based on octiles (Moors, 1988)) is given by

Ku =
Q (0.875)−Q (0.625) +Q (0.375)−Q (0.125)

Q (0.75)−Q (0.25)
, (2.11)

where the Q (.) is the quantile function.The skewness and kurtosis measures based

on quantiles like Bowley’s skewness and Moors’s kurtosis have a number of ad-

vantages compared to the classical measures of skewness and kurtosis, e.g. they

are less sensitive to outliers and they exist for the distributions even without

defined the moments.

Some useful expansion of ATGIE distribution:

Here we have expand the CDF and PDF of ATGIE distribution by using the

following series expansions

(1− a)−n =
∞∑
j=0

(
n+ j − 1

n− 1

)
aj ,

Arc tanx =
π

2
−

∞∑
i=0

(−1)i

2i+ 1
x−(2i+1), and

e−x =

∞∑
n=0

(−1)nxn

n!

The CDF of ATGIE distribution defined in (2.3) is

F (x) = 1− arctan[α(1− e−λ/x)
β
]

arctan(α)
;x ⩾ 0, (α, β, λ) > 0

= 1− 1

arctan(α)

[
π

2
−

∞∑
i=0

(−1)i

2i+ 1

{
α(1− e−λ/x)

β
}−(2i+1)

]

= ω +
∞∑
i=0

∞∑
k=0

dike
−λk/x

(2.12)

where

dik =
(−1)i

(2i+ 1)

α−(2i+1)

arctan(α)

(
k + β(2i+ 1)− 1

β(2i+ 1)− 1

)
and

ω = 1− π

2 arctan(α)
.

Differentiating (2.12) with respect to x we get PDF of ATGIE distribution as,

f(x) =

∞∑
i=0

∞∑
k=0

dike
−λk/xλk

x2
=

∞∑
i=0

∞∑
k=0

d∗
ik
x−2e−λk/x (2.13)
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where d∗
ik
= dik × λk.

Moments : The rth moment about origin of ATGIE distribution can be written

as

µ′
r = E (Xr)

=

∫ ∞

0
xrf (x) dx

=

∫ ∞

0

∞∑
i=0

∞∑
k=0

d∗
ik

xr−2e−λk/xdx

=

∞∑
i=0

∞∑
k=0

d∗
ik

Γ(1− r)

[λk]1−r .

where
∞∫
0

xne−axdx = Γ(n+1)
an+1 is a standard gamma integral.

Moment Generating Function (mgf): Let X be a random variable, then the

mgf of X can be defined as

MX (t) = E
(
etX

)
=

∞∑
l=0

tl

l!
µ′
r

=
∞∑
l=0

∞∑
i=0

∞∑
k=0

d∗
ik

tl

l!

Γ(1− r)

[λk]1−r .

Conditional Moments: The conditional moments of random variable X that

follows ATGIE distribution can be expressed as

E (Xn|X > x) =
1

S(x)

∫ ∞

x
xn f(x) dx

=
1

S(x)

∞∑
i=0

∞∑
k=0

d∗
ik

∫ ∞

x
xn−2 e−λk/x dx

=
1

S(x)

∞∑
i=0

n∑
k=0

d∗
ik

γ (1− n, λkx)

[λk]1−n

where S(x) is survival function and
∞∫
t

xae−bxdx = γ(a+1,bt)
ba+1 is lower incomplete

gamma function.

Order Statistics for ATGIE distribution:
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Let Xk:n represents the kth order statistic of X1, ..., Xn and fk:n indicates

PDF of kth then

fk:n (x) =
n!

(k − 1)! (n− k)!
f (x) [F (x)]k−1[1− F (x)]n−k

=
n!

(k − 1)! (n− k)!
f (x)

n−k∑
j=1

(
n− k

j

)
[F (x)]j+k−1

Using CDF and PDF defined in (2.12) and (2.13) we get

fk:n (x) =
∞∑
i=0

n∑
k=0

Dikx
−2e−λk/x

n−k∑
j=1

(
n− k

j

)[
ω +

∞∑
i=0

∞∑
k=0

dike
−λk/x

]j+k−1

where Dik = n!
(k−1)!(n−k)! × d∗

ik
.

3. METHODS OF ESTIMATION

The object of estimation is to evaluate a model parameter value based on

sample information. The estimation theory deals with the basic problem of infer-

ring some relevant features of a chance experiment centered on the observation of

the experiment outcomes. There are so many methods which are used to evaluate

values of parameters. Three kinds of parameter estimation methods have been

considered, such as MLE, LSE, and the Cramer-von Mises (CVM) methods.

(a) Maximum Likelihood Estimation:

In this section, we have illustrated the maximum likelihood estimators (MLE’s)

of the ATGIE(α, β, λ) distribution. Let x = (x1, . . . , xn) be the observed val-

ues of size n from ATGIE(α, β, λ) then the likelihood function for the parameter

vector Ψ = (α, β, λ)T can be written as,

L (Ψ) =

(
αβλ

arctan(α)

)n n∏
i=1

x−2
i e−λ/xi(1− e−λ/xi)

β−1

1 + [α(1− e−λ/xi)
β
]
2

It is easy to deal with log-likelihood function as,

ℓ (α, β, λ|x) = n ln (αβλ)− n ln{arctan(α)} − 2
n∑

i=1

xi − λ
n∑

i=1

x−1
i

−(β − 1)

n∑
i=1

ln(1− e−λ/xi)−
n∑

i=1

ln

{
1 + [α(1− e−λ/xi)

β
]
2
} (3.1)
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The elements of the score function B (Ψ) = (Bα, Bβ, Bλ) are obtained as

∂ℓ

∂α
=

n

α
− n

arctan(α)[1 + α2]
− 2α

n∑
i=1

(1− e−λ/xi)
2β

1 + [α(1− e−λ/xi)
β
]
2
]

∂ℓ

∂β
=

n

β
+

n∑
i=1

ln(1− e−λ/xi)−α2
n∑

i=1

(1− e−λ/xi)
2β

ln(1− e−λ/xi)

1 + [α(1− e−λ/xi)
β
]
2

∂ℓ

∂λ
=

n

λ
−

n∑
i=1

x−1
i − (β − 1)

n∑
i=1

e−λ/xi

xi(1− e−λ/xi)

−2α2β
n∑

i=1‘

x−1
i (1− e−λ/xi)

2β−1
e−λ/xi

1 + [α(1− e−λ/xi)
β
]
2

(3.2)

Equating Bα, Bβ and Bλ to zero and solving these non-linear equations si-

multaneously gives the MLE Ψ̂ =
(
α̂, β̂, λ̂

)
of Ψ = (α, β, λ)T . These equations

cannot be solved analytically and by using the computer software R, Mathemat-

ica, Matlab, or any other programs and Newton-Raphson’s iteration method, one

can solve these equations. Using the asymptotic normality of MLEs, approximate

100(1− γ)% confidence intervals for α, β and λ can be constructed as,

α̂± zγ/2
√
var(α̂), β̂ ± zγ/2

√
var(β̂) and λ̂± zγ/2

√
var(λ̂), (3.3)

where zγ/2 is the upper percentile of standard normal variate.

(b) Least-Square Estimation (LSE)Method:

The least-square estimators of the unknown parameters α, β and λ of ATGIE

distribution can be obtained by minimizing

M (X;α, β, λ) =

n∑
i=1

[
F (X(i))−

i

n+ 1

]2
, (3.4)

with respect to (w.r.t.) α, β and λ, (Swain et al., 1988).

From a distribution function F (.), consider random sample be denoted by

{X1, . . . , Xn} with sample size is n where F (X(i)) represents the distribution func-

tion of the random variables ordered X(1), X(2), . . . , X(n). Then LSE (α̃, β̃ and λ̃)

is acquired with minimization of

M (X;α, β, λ) =

n∑
i=1

[
1− arctan[α(1− e−λ/x(i))

β
]

arctan(α)
− i

n+ 1

]2

(3.5)



80 Ram Suresh Yadav & Vijay Kumar

with respect to α, β and λ. Differentiation of (3.5) with respect to α, β and

λ yields,

∂M

∂α
= −2

n∑
i=1

[
1− arctan[αT (xi)]

arctan(α)
− i

n+ 1

]
×[

T (xi)

(α2{T (xi)}2 + 1)
− arctan[αT (xi)]

(α2 + 1) arctan2(α)

]
∂M

∂β
=

2α

arctan(α)

n∑
i=1

[
1−

arctan[αT
(
x(i)

)
]

arctan(α)
− i

n+ 1

][
T
(
x(i)

)
ln(1− e−λ/x(i))

(α2{T
(
x(i)

)
}2 + 1)

]
∂M

∂λ
= − 2αβ

arctan(α)

n∑
i=1

[
1−

arctan[αT
(
x(i)

)
]

arctan(α)
− i

n+ 1

][
(1− e−λ/x(i))

β−1
e−λ/x(i)

x(i)(α2{T
(
x(i)

)
}2 + 1)

]
.

where

T
(
x(i)

)
= (1− e−λ/x(i))β.

The LSE estimators can be obtained by solving

∂M

∂α
= 0,

∂M

∂β
= 0 and

∂M

∂λ
= 0. (3.7)

simultaneously.

Likewise, the weighted LSEs can be found with minimization w.r.t. α, β and

λ.

M (X;α, β, λ) =
n∑

i=1

wi

[
F (X(i))−

i

n+ 1

]2
.

The weights wi are

wi =
1

V ar(X(i))
=

(n+ 1)2 (n+ 2)

i (n− i+ 1)
.

Hence, the weighted LSEs of α, β and λ can be found respectively by mini-

mizing following function w.r.t. α, β and λ.

M (X;α, β, λ) =
n∑

i=1

(n+ 1)2 (n+ 2)

i (n− i+ 1)

[
1− arctan[α(1− e−λ/x(i))

β
]

arctan(α)
− i

n+ 1

]2

(c) Cramer-Von-Mises estimation (CVME):

The CVM estimators for α, β and λ are obtained by minimization of
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A (X;α, β, λ) =
1

12n
+

n∑
i=1

[
F
(
x(i)|α, β, λ

)
− 2i− 1

2n

]2

=
1

12n
+

n∑
i=1

[
1− arctan[α(1− e−λ/x(i))

β
]

arctan(α)
− 2i− 1

2n

]2

.

(3.6)

Differentiating (3.6) with respect to α, β and λ we get,

∂A

∂α
= −2

n∑
i=1

[
1−

arctan[αT
(
x(i)

)
]

arctan(α)
− 2i− 1

2n

]
[

T
(
x(i)

)
(α2{T

(
x(i)

)
}2 + 1)

−
arctan[αT

(
x(i)

)
]

(α2 + 1)arctan2(α)

]
∂A

∂β
=

2α

arctan(α)

n∑
i=1

[
1−

arctan[αT
(
x(i)

)
]

arctan(α)
− 2i− 1

2n

][
T
(
x(i)

)
ln(1− e−λ/x(i))

(α2{T
(
x(i)

)
}2 + 1)

]
∂A

∂λ
= − 2αβ

arctan(α)

n∑
i=1

[
1−

arctan[αT
(
x(i)

)
]

arctan(α)
− 2i− 1

2n

][
(1− e−λ/x(i))

β−1
e−λ/x(i)

x(i)(α2{T
(
x(i)

)
}2 + 1)

]

where T
(
x(i)

)
= (1− e−λ/x(i))β. The CVM estimators can be found by solving

∂A

∂α
= 0,

∂A

∂β
= 0 and

∂A

∂λ
= 0. (3.7)

simultaneously.

4. Data Analysis: Application

In this section, we illustrate the applicability of arctan generalized inverted

exponential distribution using two real datasets used by earlier researchers. To

illustrate the goodness of fit of the ATGIE distribution, we have select some well

known distribution for comparison purpose which are listed below:

(i) Generalized Exponential Extension (GEE) distribution: The probabil-

ity density function of GEE introduced by (Lemonte, 2013) having up-

side down bathtub-shaped hazard function distribution with parameters

(α, β, λ) is

fGEE (x;α, β, λ) = αβλ (1 + λx)α−1 exp {1− (1 + λx)α}

[1− exp {1− (1 + λx)α}]β−1 ; x ⩾ 0
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(ii) Generalized Exponential (GE) distribution: The probability density func-

tion of generalized exponential distribution (Gupta & Kundu, 1999) is.

fGE (x; α, λ) = α λ e−λ x
{
1− e−λ x

}α−1
; (α, λ) > 0, x > 0.

(iii) Generalized Rayleigh distribution The probability density function of

Generalized Rayleigh (GR) distribution (Kundu & Raqab, 2005) is

fGR (x; α, λ) = 2 α λ2 x e−(λx)2
{
1 − e−(λx)2

}α−1
; x > 0

Here α > 0 and λ > 0 are the shape and scale parameters respectively.

(iv) Modified Weibull (MW) The modified Weibull (MW) distribution was

introduced by (Lai et al., 2003) with three parameters α > 0, β > 0 and

λ > 0. The probability density function (pdf) is

fMW (x) = α (λ+ βx)xλ−1 exp(βx− αxλeβx ;x > 0

(v) Weibull Extension (WE) Model: The probability density function of

Weibull extension (WE) distribution (Tang et al., 2003) with three pa-

rameters (α > 0, β > 0, λ > 0) is

fWE(x;α, β, λ) = λβ
(x
α

)β−1
exp

(x
α

)β

exp

{
−λα

(
exp

(x
α

)β
− 1

)}
; x > 0.

Dataset I: The data below are from the tensile strength of 69 observations

of failure stresses of single carbon fibers of length 50 mm,(Bader & Priest, 1982).

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,

1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,

2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,

2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554,

2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726,

2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012,

3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585

We have presented the MLEs directly by using optim() function (R Core

Team, 2015) and Rizzo (2008) by maximizing the likelihood function (3.1). We

have obtained α̂ = 1.3544(0.9132), β̂ = 124.7936(4.1417), λ̂ = 11.8788(0.6331)

and corresponding value of log-likelihood is -49.5653. Using the method described

in Section 3, we can construct the approximate confidence intervals(ACI) based

on MLE’s. Table 1 shows the MLE’s with their standard errors(SE) and 95%

confidence intervals for α, β and λ. In Table 1 we have presented the MLE’s with
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their standard errors (SE) and 95% asymptotic confidence intervals(ACI) for α, β

and λ.

In Figure 2 we have displayed the graph of profile log-likelihood functions of

ML estimates of α, β and λ. We have noticed that ML estimates of α, β and λ

exist and can be obtained uniquely.
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Figure 2. Profile log-likelihood functions of α, β and λ.

To evaluate the goodness of fit of a given distribution we generally use the

PDF and CDF plot. To get the additional information we have to plot Q-Q and

P-P plots. In particular, the Q-Q plot may provide information about the lack-of-

fit at the tails of the distribution, whereas the P-P plot emphasizes the lack-of-fit,

(Kumar & Ligges 2011). From Figure 3 we have shown that the ATGIE model

fits the data very well.
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Figure 3. PP plot(left panel) and QQ plot(right panel).
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Figure 4. Profile log-likelihood functions of α, β and λ.
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Dataset II: For the illustration, we consider the another data set to fit

our model on the tensile strength of 65 observations of failure stresses of single

carbon fibers of length 50 mm (Bader & Priest, 1982). The data set is also used

by Muhammad & Liu (2019). The data is as follows:

1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807,

1.812, 1.840, 1.852, 1.852, 1.862, 1.864, 1.931, 1.952, 1.974, 2.019,

2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172, 2.180, 2.194,

2.211, 2.270, 2.272, 2.280, 2.299, 2.308, 2.335, 2.349, 2.356, 2.386,

2.390, 2.410, 2.430, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577,

2.593, 2.601, 2.604, 2.620, 2.633, 2.670, 2.682, 2.699, 2.705, 2.735,

2.785, 3.020, 3.042, 3.116, 3.174

We have obtained the MLEs with their standard errors (SE) in parenthe-

sis of ATGIE distribution as α̂ = 0.4811(1.1763), β̂ = 274.1557(3.0760), λ̂ =

13.2370(0.6467) and corresponding value of log-likelihood is -34.7884. In Figure

5 we have displayed the graph of profile log-likelihood functions of ML estimates

of α, β and λ. We have noticed that ML estimates of α, β and λ exist and can be

obtained uniquely.
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Figure 5. The P-P plot (left panel) and Q-Q plot (right panel).

By using MLE method we estimate the parameter of each of these distribu-

tions. For the goodness of fit purpose we use log-likelihood (l(θ̂)) where θ̂ =

(α̂, β̂, λ̂) to compute Akaike information criterion (AIC), Bayesian information

criterion (BIC), Corrected Akaike Information criterion (CAIC) and Hannan-

Quinn information criterion (HQIC), statistic to select the best model among

selected models. The expressions to calculate AIC, BIC, CAIC and HQIC are

listed below:
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AIC = −2l(θ̂) + 2k ,

BIC = −2l(θ̂) + k log (n) ,

CAIC = AIC +
2k (k + 1)

n− k − 1
,

HQIC = −2l(θ̂) + 2k log [log (n)] ,

where k is the number of parameters and n is the size of the sample in

the model under consideration. Further, in order to evaluate the fits of the AT-

GIE distribution with some selected distributions we have taken the Kolmogorov-

Smirnov (KS), the Anderson-Darling (W ) and the Cramer-Von Mises (A2) statis-

tic. These statistics are widely used to compare non-nested models and to illus-

trate how closely a specific CDF fits the empirical distribution to the given data

set. These statistics are calculated as

KS = max
1⩽i⩽n

(
di −

i− 1

n
,
i

n
− di

)
,

W = −n− 1

n

n∑
i=1

(2i− 1) [ln di + ln (1− dn+1−i)] ,

A2 =
1

12n
+

n∑
i=1

[
(2i− 1)

2n
− di

]2
,

where di = CDF (xi) ; the xi’s being the ordered observations, (D’Agostino and

Stephens,1986).

For the assessment of potentiality of the proposed model we have calculated

the Akaike information criterion (AIC), Bayesian information criterion (BIC),

Corrected Akaike information criterion (CAIC) and Hannan-Quinn information

criterion (HQIC) and these are presented in Table 2.

Table 1

Estimated parameters, log-likelihood AIC and KS(Data set-I

Method α̂ β̂ λ̂ ll AIC KS(p-value)

MLE 1.3544 124.7936 11.8788 -49.5653 105.1306 0.0378(0.9999)

LSE 4.3231 47.1571 8.2149 -51.8238 109.6476 0.0377(0.9999)

CVME 2.3575 82.2636 10.2617 -50.0926 106.1853 0.0388(0.9999)

The Histogram and the density function of fitted distributions and Empirical

distribution function with estimated distribution function of ATGIE, generalized
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Gompertz (GG), generalized exponential extension (GEE), exponential extension

(EE), Weibull and EEP distributions are presented in Figure 4.
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Figure 6. The Histogram and the PDF of fitted distributions(first column) and

the fitted qunatiles and sample quantiles(second column) of datasets I and II,

respectively for estimation methods(MLE, LSE and CVM).

To compare the goodness-of-fit of the ATGIE distribution with other com-

peting distributions we have presented the value of Kolmogorov-Smirnov (KS),

the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics. These

three statistics are widely used to compare non-nested models and to illustrate

how closely a specific CDF fits the empirical distribution of a given data set.

From Table 3 the result shows that the ATGIE distribution has the minimum

value of the test statistic and higher p-value hence we conclude that the ATGIE

distribution gets quite better fit and more consistent and reliable results from
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others taken for comparison.

Table 2

Estimated parameters, log-likelihood AIC and KS(Data set-II

Method α̂ β̂ λ̂ ll AIC KS(p-value)

MLE 0.4811 274.1557 13.2370 -34.7884 75.5767 0.0634(0.9565)

LSE 1.5978 114.4953 10.5397 -35.8880 77.7760 0.0580(0.9809)

CVME 1.6213 126.4087 10.7511 -35.6623 77.3246 0.0604(0.9716)

To evaluate the goodness of fit of a given distribution we generally use the

PDF and CDF plot. To get the additional information we have to plot Q-Q

and P-P plots. In particular, the Q-Q plot may provide information about the

lack-of-fit at the tails of the distribution, whereas the P-P plot emphasizes the

lack-of-fit. From Figure 6 we have shown that the ATGIE model fits the data

very well.

For the assessment of potentiality of the proposed model we have calculated

the Akaike information criterion (AIC), Bayesian information criterion (BIC),

Corrected Akaike information criterion (CAIC) and Hannan-Quinn information

criterion (HQIC) which are presented in Table 3 and Table 4 for date sets I and

II.

Table 3

Log-likelihood(LL), AIC, BIC, CAIC and HQIC(Dataset-I)

Model -LL AIC BIC CAIC HQIC

ATGIE -49.5653 105.1306 111.8329 105.4999 107.7897

MW -49.6017 105.2033 111.9056 105.5725 107.8623

GEE -49.6465 105.2930 111.9954 105.6623 107.9521

GR -50.6292 105.2584 109.7266 105.4402 107.0311

WE -50.7239 107.4479 114.1502 107.8171 110.1069

GE -54.6205 113.2409 117.7091 113.4227 115.0136

For the both datasets we have presented the Histogram and the density func-

tion of fitted distributions and Empirical distribution function with the estimated

distribution function of ATGIE and some selected distributions are presented in

Figure 7.
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Table 4

Log-likelihood(LL), AIC, BIC, CAIC and HQIC

Model -LL AIC BIC CAIC HQIC

ATGIE -34.7884 75.5767 82.0999 75.9702 78.1505

GEE -35.0445 76.0889 82.6121 76.4824 78.6627

MW -35.4552 76.9103 83.4335 77.3038 79.4841

WE -35.4760 76.9521 83.4753 77.3455 79.5259

GR -35.7674 75.5349 79.8836 75.7284 77.2507

GE -38.3657 80.7315 85.0803 80.9250 82.4474
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Figure 7. The Histogram and the density function of fitted distributions and

Empirical distribution function with estimated distribution function for

Dataset-I(left panel) and for Dataset-II(right panel).

To compare the goodness-of-fit of the ATGIE distribution with other com-

peting distributions we have presented the value of Kolmogorov-Smirnov (KS),
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the Anderson-Darling (W ) and the Cramer-Von Mises (A2) statistics in Table 5

and Table 6. It is observed that the ATGIE distribution has the minimum value

of the test statistic and higher p-value for the both datasets I and II, thus we

conclude that the ATGIE distribution gets quite better fit and more consistent

and reliable results from others taken for comparison.

Table 5

The goodness-of-fit statistics and their corresponding p−value (Dataset-I)

Model KS(p-value) AD(p-value) CVM(p-value)

ATGIE 0.0378(0.9999) 0.0142(0.9998) 0.1406(0.9992)

MW 0.0542(0.9873) 0.0326(0.9677) 0.2717(0.9577)

GEE 0.0559(0.9823) 0.0413(0.9279) 0.2924(0.9436)

GR 0.0658(0.9264) 0.0625(0.8000) 0.4417(0.8061)

WE 0.0647(0.9348) 0.0568(0.8357) 0.4431(0.8046)

GE 0.0949(0.5629) 0.1603(0.3603) 1.1235(0.2983)

Table 6

The goodness-of-fit statistics and their corresponding p−value (Dataset-II)

Model KS(p-value) AD(p-value) CVM(p-value)

ATGIE 0.0634(0.9565) 0.0284(0.9819) 0.2031(0.9896)

GEE 0.0721(0.8876) 0.0537(0.8550) 0.3239(0.9189)

MW 0.0538(0.9918) 0.0243(0.9915) 0.2696(0.9590)

WE 0.0560(0.9869) 0.0260(0.9880) 0.2787(0.9531)

GR 0.0814(0.7824) 0.0714(0.7446) 0.4282(0.8199)

GE 0.0966(0.5783) 0.1290(0.4614) 0.8200(0.4663)

5. Conclusion

In this paper, a continuous probability distribution called arctan generalized

inverted exponential distribution. Some mathematical and statistical proper-

ties of the ATGIE distribution are presented such as the shapes of the proba-

bility density, cumulative density and hazard rate functions, survival function,

quantile function, the skewness, and kurtosis measures are derived and estab-

lished and found that the proposed model has flexible hazard rate function. The

model parameters are estimated by using three well-known estimation methods

namely maximum likelihood estimation (MLE), least-square estimation (LSE),

and Cramer-Von-Mises (CVM) methods and it is found that MLEs are quite good

than LSEs and CVMs. Two real datasets is considered to explore the applicabil-

ity and suitability potentiality of the proposed distribution and found that the
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proposed model is quite better than other lifetime model taken into considera-

tion. We hope this model may be an alternative in the field of reliability analysis,

applied statistics and probability theory.
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