J. Nat. Acad. Math. ISSN 0970-5228
Vol. 35 (2021), pp.14-23

Applications of Multivariable H-Function of Srivastava-Panda and
Generalized Polynomials of Srivastava in a Problem on Heat
Conduction
By
S.S. Chauhan” and R.C. Singh Chandel

Department of Mathematics, D.V. College, Orai (Jalaun), UP

Email: dr.surendrasingh2010@gmail.com

Abstract

In the present paper, First we evaluate an integral involving the product of multivariable H-function of
Srivastava and Panda ([30],[31],[32]), several generalized polynomials of Srivastava [25], a
generalizations of multivariable polynomials of Chandel and Tiwari [10] and Hermite Polynomials; and
then we make its applications in solving a problem on heat conduction given by Bhonsle [1]. One
expansion formula is also established. Finally, we also discuss special cases for different polynomials.
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1. Introduction
Appell’s functions and the functions related to them have many applications in mathematical physics
([19],[20],[21]), Srivastava, Gupta and Goyal [33]) have discussed a problem on heat conduction in a
finite bar using H-function of two variables of Srivastava and Panda ([30],[31],[32]). Singh [23] used
generalized hypergeometric function in a problem of cooling of a heated cylinder. Further Singh [24]
evaluated some integrals involving Kampe de Feriet function and one of them was employed to obtain a
solution of a problem on heat conduction given by Bhonsle [1]. Chandel and Yadava [3] have evlauted
certain integrals involving multiple hypergeometric function of Srivastava and Daoust ([26],[27],[28));
also see Srivastava and Karlsson [29, p.37, eqns. (2.1) to (2.3)], and their applications have been given in
solving the same problem on heat conduction. Chandel-Bhargava [2] have used generalized Kampe de
Feriet function of two variables due to Srivastava-Daoust ([26],[27],[28]), while Chandel-Gupta [5], have
used multivariable H-function of Srivastava and Panda ([30],[31],[32]; also see Srivastava Gupta and
Goyal [33]) in a problem of colling of a heated cylinder. Chandel and Gupta [4] have also used H-
function of several variables in a problem of heat conduction. Chandel and Tiwari [6] employed multiple
hypergeometric function of several variables due to Srivastava and Daoust ([26],[27],[28]) in two
boundary value problems. Chaurasia and Patni [14] have discussed a heat conduction problem involving
the product of multivariable H-function and two general classes of polynomials, while Chaurasia and
Gupta [15] have discussed a solution of partial differential equation of heat conduction in a rod under
Robin condition.

Recently Chandel and Sengar [7] have discussed two boundary value problems on heat
conduction involving the product of multivariable H-function of Srivastava-Panda ([30],[31],[32]) and
several generalized polynomials of Srivastava [25] and their special cases have been discussed. Further
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Chandel and Sengar [8] have discussed a problem on heat conduction in a rod under the Robin condition
involving the product of above multivariable H-function and several generalized polynomials of
Srivastava [25} and a generalization of multivariable polynomials of Chandel and Tiwari [10].

Chandel and Sengar [11] discussed multivariable generalized polynomials defined through their
generating function. Also, Chandel and Sharma [12] discussed a multivariable analogue of a class
polynomials. Further Chandel and Kumar [13] discussed a contour integral representation of two variable
generalized hypergeometric function of Srivastava and Daoust. Also, Kumar and Rai [18] discussed
multiple fractional diffusions via multivariable H-function.

First, we evaluate an integral involving the product of multivariable H-function of Srivastava and
Panda ([30],[31],[32]), several generalized polynomials of Srivastava [25] and Hermite polynomials; and
then we make its applications in solving a problem on heat conduction given by Bhonsle [1]. One
expansion formula is also established. Finally, we also discuss special cases for different polynomials.

2. Main Integral
In this section, we evaluate the integral
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where, H,,(z) are Hermite polynomials (see Rainville [22]). S7*[z] are generalized polynomials
0,1:(1' V') (n (™M) L . . )
of Srivastava [25], H A C(B"D ). o(B™ D) is multivariable H-function of Srivastava-Panda ([30],[31],[32];
also see Srivastava, Gupta and Goyal [33]);
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p =0,1,2,..; 2v,n;, m; are positive integers and the coefficients Anj,kj (j=1,...,r) are arbitrary

parameters real or complex independent of y;, ..., ¥, z.
This integral will be quite useful in our further investigations.
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Proof. Multiplying both sides of Lebdev equation [20, (4.16.1)] by e‘ZzHZ,,(z) and using orthogonal
property of Hermite polynomials [22], we have
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Now left hand side of (2.1)
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=right hand side of (2.1) (By an appeal to (2.2)

3. Application of Heat Conduction.
Bhonsle [1] has employed Hermite polynomials in solving the partial differential equation

¢ ¢ 2
i Kaz2 K¢pz*, (3.1

where ¢(z,t) tends to zero for a large value of t and when |z| — oo, this equation is related to the
problem of heat conduction due to Churchill [16].

% = k2Lh, (- o), (32)

provided that ¢, = 0 and h; = Kz2.
The solution of (3.1) given by Bhonsle [1] is

ZZ
P(z,t) = X2 Ase” TS B (2) (3.3)

Here we consider the problem of determining ¢(z, t), where for t = 0.
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Thus by (3.3) and (3.4), we have
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=+/2m(2v)! A,, (by orthogonal property of Hermite polynomials
Erdelyi (17,p.289]).

Therefore
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where all conditions of (2.1) are satisfied.
Thus, substituting the value of As from (3.5) in (3.3), the solution of the main problem is given by
z2 k;
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provided that all conditions of (2.1) are satisfied.
4. Expansion Formula.
An appeal to (3.4) and (3.6) gives the following expansion formula
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valid if all conditions (2.1) are satisfied:
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5. Special Cases.
Case I. For each m; = 2, Ay, x, = (—1)*i, we have

S lyil - yi"iHni< =1,..,r.

1
—),i
2&)

Therefore, for Hermite polynomials ([35], p. 106, equation (5.5.4) and [34], p. 158) our main integral

(2.1) reduces to
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where all conditions of (2.1) are satisfied.
Thus solution (3.6) of the problem reduces to
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provided that all conditions of (2.1) are satisfied.

The expansion formula (4.1) reduces to
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Therefore, for Laguerre polynomials ([35], p.10, eqgn. (5.1.6) and [34], p. 158), the main integral (2.1)
reduces to
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provided that all conditions (2.1) are satisfied.

Therefore, solution (3.6) of the problem reduces to
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valid if all conditions of (3.1) are satisfied.

The expansion formula (4.1) reduces to
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Therefore, solution (3.6) of the problem reduces to
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provided that all conditions of (2.1) hold true.

Similarly specializing the parameters of H-function, we can derive the similar results involving
different special functions which may be useful in mathematical analysis and physical problems.
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