

Applications of Multivariable H -Function of Srivastava-Panda and Generalized Polynomials of Srivastava in a Problem on Heat Conduction

By

S.S. Chauhan* and R.C. Singh Chandel

Department of Mathematics, D.V. College, Orai (Jalaun), UP

Email: dr.surendrasingh2010@gmail.com

Abstract

In the present paper, First we evaluate an integral involving the product of multivariable H -function of Srivastava and Panda ([30],[31],[32]), several generalized polynomials of Srivastava [25], a generalizations of multivariable polynomials of Chandel and Tiwari [10] and Hermite Polynomials; and then we make its applications in solving a problem on heat conduction given by Bhonsle [1]. One expansion formula is also established. Finally, we also discuss special cases for different polynomials.

Keywords: Hermite polynomials, Jacobi polynomials, Lebdve equation

2020 Mathematics Subject Classification: 33C50

1. Introduction

Appell's functions and the functions related to them have many applications in mathematical physics ([19],[20],[21]), Srivastava, Gupta and Goyal [33]) have discussed a problem on heat conduction in a finite bar using H -function of two variables of Srivastava and Panda ([30],[31],[32]). Singh [23] used generalized hypergeometric function in a problem of cooling of a heated cylinder. Further Singh [24] evaluated some integrals involving Kampe de Feriet function and one of them was employed to obtain a solution of a problem on heat conduction given by Bhonsle [1]. Chandel and Yadava [3] have evlauted certain integrals involving multiple hypergeometric function of Srivastava and Daoust ([26],[27],[28]); also see Srivastava and Karlsson [29, p.37, eqns. (2.1) to (2.3)], and their applications have been given in solving the same problem on heat conduction. Chandel-Bhargava [2] have used generalized Kampe de Feriet function of two variables due to Srivastava-Daoust ([26],[27],[28]), while Chandel-Gupta [5], have used multivariable H -function of Srivastava and Panda ([30],[31],[32]; also see Srivastava Gupta and Goyal [33]) in a problem of colling of a heated cylinder. Chandel and Gupta [4] have also used H -function of several variables in a problem of heat conduction. Chandel and Tiwari [6] employed multiple hypergeometric function of several variables due to Srivastava and Daoust ([26],[27],[28]) in two boundary value problems. Chaurasia and Patni [14] have discussed a heat conduction problem involving the product of multivariable H -function and two general classes of polynomials, while Chaurasia and Gupta [15] have discussed a solution of partial differential equation of heat conduction in a rod under Robin condition.

Recently Chandel and Sengar [7] have discussed two boundary value problems on heat conduction involving the product of multivariable H -function of Srivastava-Panda ([30],[31],[32]) and several generalized polynomials of Srivastava [25] and their special cases have been discussed. Further

Chandel and Sengar [8] have discussed a problem on heat conduction in a rod under the Robin condition involving the product of above multivariable H -function and several generalized polynomials of Srivastava [25] and a generalization of multivariable polynomials of Chandel and Tiwari [10].

Chandel and Sengar [11] discussed multivariable generalized polynomials defined through their generating function. Also, Chandel and Sharma [12] discussed a multivariable analogue of a class polynomials. Further Chandel and Kumar [13] discussed a contour integral representation of two variable generalized hypergeometric function of Srivastava and Daoust. Also, Kumar and Rai [18] discussed multiple fractional diffusions via multivariable H -function.

First, we evaluate an integral involving the product of multivariable H -function of Srivastava and Panda ([30],[31],[32]), several generalized polynomials of Srivastava [25] and Hermite polynomials; and then we make its applications in solving a problem on heat conduction given by Bhonsle [1]. One expansion formula is also established. Finally, we also discuss special cases for different polynomials.

2. Main Integral

In this section, we evaluate the integral

$$\begin{aligned}
 & \int_{-\infty}^{\infty} z^{2\rho} e^{-z^2} H_{2v}(z) H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots;(\mu^{(n)},\nu^{(n)})} \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}] \\ [(c):\Psi', \dots, \Psi^{(n)}] \end{matrix} \right. \\
 & \quad \left. [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}] ; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) \prod_{i=1}^r S_{n_i}^{m_i} [y_i z^{2\beta_i}] dz \\
 & = \sqrt{\pi} 2^{2(v-p)} \sum_{k_1=0}^{[n_1/m_1]} \dots \sum_{k_r=0}^{[n_r/m_r]} \prod_{i=1}^r \frac{(-n_i)_{m_i k_i} A_{n_i k_i}}{k_i!} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\
 & \quad H_{A+1,C+1:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda+1:(\mu',\nu');\dots;(\mu^{(n)},\nu^{(n)})} \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}] \\ [(c):\Psi', \dots, \Psi^{(n)}] \end{matrix} \right. \\
 & \quad \left. [-2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r; 2\alpha_1, \dots, 2\alpha_n] ; [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}] ; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right) \\
 & \quad [v - \rho - \beta_1 k_1 - \dots - \beta_r k_r; \alpha_1, \dots, 2\alpha_n] ; [(d'): \delta'] ; \dots ; [(d^{(n)}): \delta^{(n)}] ; \frac{1}{4^{\alpha_1}}, \dots, \frac{1}{4^{\alpha_n}}.
 \end{aligned} \tag{2.1}$$

where, $H_{2v}(z)$ are Hermite polynomials (see Rainville [22]). $S_n^m[z]$ are generalized polynomials of Srivastava [25], $H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots;(\mu^{(n)},\nu^{(n)})}$ is multivariable H -function of Srivastava-Panda ([30],[31],[32]; also see Srivastava, Gupta and Goyal [33]);

$$\begin{aligned}
 & |arg x_i z^{2\alpha_i}| < \frac{\pi}{2} \Delta_i, \\
 & \Delta_i = \sum_{j=1}^{\lambda} \theta_j^{(i)} - \sum_{j=\lambda+1}^A \theta_j^{(i)} + \sum_{j=1}^{\nu^{(i)}} \phi_j^{(i)} - \sum_{j=\nu^{(i)}+1}^{B^{(i)}} \phi_j^{(i)} - \sum_{j=1}^C \psi_j^{(i)} + \sum_{j=1}^{\mu'} \delta_j^{(i)} \\
 & - \sum_{j=\mu^{(i)}+1}^{D^{(i)}} \delta_j^{(i)} > 0, 1, \dots, n
 \end{aligned}$$

$\rho = 0, 1, 2, \dots; 2v, n_j, m_j$ are positive integers and the coefficients A_{n_j, k_j} ($j=1, \dots, r$) are arbitrary parameters real or complex independent of y_1, \dots, y_r, z .

This integral will be quite useful in our further investigations.

Proof. Multiplying both sides of Lebdev equation [20, (4.16.1)] by $e^{-z^2} H_{2v}(z)$ and using orthogonal property of Hermite polynomials [22], we have

$$\int_{-\infty}^{\infty} z^{2\rho} e^{-z^2} H_{2v}(z) dz = \frac{\sqrt{\pi} 2^{2(v-\rho)} \Gamma(2\rho+1)}{\Gamma(\rho-v+1)}, \rho = 0, 1, 2, \dots. \quad (2.2)$$

Now left hand side of (2.1)

$$\begin{aligned} &= \sum_{k_1=0}^{[n_1, m_1]} \dots \sum_{k_r=0}^{[n_r, m_r]} \prod_{i=1}^r \frac{(-n_i)_{m_i k_i} A_{n_i k_i} y_i^{k_i}}{k_i!} \frac{1}{(2\pi\omega)^n} \int_{L_1} \dots \int_{L_n} \prod_{i=1}^n \frac{\prod_{j=1}^{\mu^{(i)}} \Gamma(d_j^{(i)} - \delta_j^{(i)} s_i)}{\prod_{j+\mu^{(i)}=1}^{D^{(i)}} \Gamma(1 - d_j^{(i)} + \delta_j^{(i)} s_i)} \\ &\quad \frac{\prod_{j=1}^{v^{(i)}} \Gamma(1 - b_j^{(i)} + \phi_j^{(i)} s_i) \prod_{j=1}^{\lambda} \Gamma(1 - a_j^{(i)} + \theta_j^{(i)} s_i)}{\prod_{j=v^{(i)}+1}^{B^{(i)}} \Gamma(b_j^{(i)} - \phi_j^{(i)} s_i) \prod_{j=\lambda+1}^A \Gamma(a_j^{(i)} - \sum_{i=1}^n \theta_j^{(i)} s_i) \prod_{j=1}^C \Gamma(1 - c_j^{(i)} - \sum_{i=1}^n \psi_j^{(i)} s_i)} \\ &\quad \left(\int_{-\infty}^{\infty} e^{-z^2} H_{2v}(z) z^{2\rho+2\beta_1 k_1 + \dots + 2\beta_r k_r + 2\alpha_1 s_1 + \dots + 2\alpha_n s_n} dz \right) ds_1 \dots ds_n \end{aligned}$$

= right hand side of (2.1) (By an appeal to (2.2))

3. Application of Heat Conduction.

Bhonsle [1] has employed Hermite polynomials in solving the partial differential equation

$$\frac{\partial \phi}{\partial t} = K \frac{\partial^2 \phi}{\partial z^2} - K \phi z^2, \quad (3.1)$$

where $\phi(z, t)$ tends to zero for a large value of t and when $|z| \rightarrow \infty$, this equation is related to the problem of heat conduction due to Churchill [16].

$$\frac{\partial \phi}{\partial t} = K \frac{\partial^2 \phi}{\partial z^2} h_1(\phi - \phi_0), \quad (3.2)$$

provided that $\phi_0 = 0$ and $h_1 = Kz^2$.

The solution of (3.1) given by Bhonsle [1] is

$$\phi(z, t) = \sum_{s=0}^{\infty} A_s e^{-(1+2s)Kt - \frac{z^2}{2}} H_s(z) \quad (3.3)$$

Here we consider the problem of determining $\phi(z, t)$, where for $t = 0$.

$$\begin{aligned} \phi(z, 0) = f(z) &= z^{2\rho} e^{-z^2} H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}]: \\ [(c):\Psi', \dots, \Psi^{(n)}]: \end{matrix} \right. \\ &\quad \left. [(b'):\phi']; \dots; [(b^{(n)}):\phi^{(n)}]; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) \prod_{i=1}^r S_{n_i}^{m_i} [y_i z^{2\beta_i}] \end{aligned} \quad (3.4)$$

Thus by (3.3) and (3.4), we have

$$\int_{-\infty}^{\infty} e^{-z^2} H_{2v}(z) H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}]: \\ [(c):\Psi', \dots, \Psi^{(n)}]: \end{matrix} \right.$$

$$\left. [(b'):\phi']; \dots; [(b^{(n)}):\phi^{(n)}]; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) \prod_{i=1}^r S_{n_i}^{m_i} [y_i z^{2\beta_i}] dz$$

$$\begin{aligned}
&= \sum_{s=0}^{\infty} A_s \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} H_s(z) H_{2v}(z) dz \\
&= \sqrt{2\pi} (2v)! A_{2v} \text{ (by orthogonal property of Hermite polynomials)} \\
&\text{Erdelyi (17,p.289].}
\end{aligned}$$

Therefore

$$\begin{aligned}
A_s &= \frac{2^{s-2\rho-1/2}}{s!} \sum_{k_1=0}^{[n_1/m_1]} \dots \sum_{k_r=0}^{[n_r/m_r]} \prod_{i=1}^r \frac{(-n_i)_{m_i k_i} A_{n_i k_i}}{k_i!} \frac{y_i^{k_i}}{4^{\beta_i k_i}} H_{A+1,C+1:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda+1:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \\
&\quad \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}], & [-2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n]; \\ [(c):\Psi', \dots, \Psi^{(n)}], & \left[-\frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \right]; \end{matrix} \right. \\
&\quad \left. \begin{matrix} [(b'):\phi']; \dots; [(b^{(n)}):\phi^{(n)}]; & x_1, \dots, x_n \\ [(d'):\delta']; \dots; [(d^{(n)}):\delta^{(n)}]; & \frac{1}{4^{\alpha_1}}, \dots, \frac{1}{4^{\alpha_n}} \end{matrix} \right), \tag{3.5}
\end{aligned}$$

where all conditions of (2.1) are satisfied.

Thus, substituting the value of A_s from (3.5) in (3.3), the solution of the main problem is given by

$$\begin{aligned}
\phi(z, t) &= \frac{e^{-\frac{z^2}{2}}}{z^{(4\rho+1)/2}} \sum_{s=0}^{\infty} H_s(z) e^{-(1+2s)k_1} \frac{2^s}{s!} \sum_{k_1=0}^{[n_1/m_1]} \dots \sum_{k_r=0}^{[n_r/m_r]} \prod_{i=1}^r \frac{(-n_i)_{m_i k_i} A_{n_i k_i}}{k_i!} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\
&\quad H_{A+1,C+1:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}], & [-2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n]; \\ [(c):\Psi', \dots, \Psi^{(n)}], & \left[-\frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \right]; \end{matrix} \right. \\
&\quad \left. \begin{matrix} [(b'):\phi']; \dots; [(b^{(n)}):\phi^{(n)}]; & x_1, \dots, x_n \\ [(d'):\delta']; \dots; [(d^{(n)}):\delta^{(n)}]; & \frac{1}{4^{\alpha_1}}, \dots, \frac{1}{4^{\alpha_n}} \end{matrix} \right), \tag{3.6}
\end{aligned}$$

provided that all conditions of (2.1) are satisfied.

4. Expansion Formula.

An appeal to (3.4) and (3.6) gives the following expansion formula

$$\begin{aligned}
&2^{(4\rho+1)/2} z^{2\rho} e^{-z^2/2} H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}]; \\ [(c):\Psi', \dots, \Psi^{(n)}]; \end{matrix} \right. \\
&\quad \left. \begin{matrix} [(b'):\phi']; \dots; [(b^{(n)}):\phi^{(n)}]; & x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \\ [(d'):\delta']; \dots; [(d^{(n)}):\delta^{(n)}]; & \end{matrix} \right) \prod_{i=1}^r S_{n_i}^{m_i} [y_i z^{2\beta_i}] \\
&= \sum_{s=0}^{\infty} H_s(z) \frac{2^s}{s!} \sum_{k_1=0}^{[n_1/m_1]} \dots \sum_{k_r=0}^{[n_r/m_r]} \prod_{i=1}^r \frac{(-n_i)_{m_i k_i} A_{n_i k_i}}{k_i!} \frac{y_i^{k_i}}{4^{\beta_i k_i}} H_{A+1,C+1:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda+1:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \\
&\quad \left(\begin{matrix} [(a):\theta', \dots, \theta^{(n)}]; & [-2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n]; \\ [(c):\Psi', \dots, \Psi^{(n)}]; & \left[-\frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \right]; \end{matrix} \right. \\
&\quad \left. \begin{matrix} [(b'):\phi']; \dots; [(b^{(n)}):\phi^{(n)}]; & x_1, \dots, x_n \\ [(d'):\delta']; \dots; [(d^{(n)}):\delta^{(n)}]; & \frac{1}{4^{\alpha_1}}, \dots, \frac{1}{4^{\alpha_n}} \end{matrix} \right), \tag{4.1}
\end{aligned}$$

valid if all conditions (2.1) are satisfied:

5. Special Cases.

Case I. For each $m_i = 2$, $A_{n_i, k_i} = (-1)^{k_i}$, we have

$$S_{n_i}^2[y_i] \rightarrow y_i^{n_i} H_{n_i} \left(\frac{1}{2\sqrt{y_i}} \right), i = 1, \dots, r.$$

Therefore, for Hermite polynomials ([35], p. 106, equation (5.5.4) and [34], p. 158) our main integral (2.1) reduces to

$$\begin{aligned} & \int_{-\infty}^{\infty} z^{2\rho} e^{-z^2} H_{2v}(z) \prod_{i=1}^r (y_i z^{2\beta_i})^{\frac{n_i}{2}} H_{n_i} \left(\frac{1}{2\sqrt{y_i z^{\beta_i}}} \right) H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \\ & \quad \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) dz \\ & = \sqrt{\pi} 2^{2(v-\rho)} \sum_{k_1=0}^{n_1/2} \dots \sum_{k_r=0}^{n_r/2} \prod_{i=1}^r \frac{(-n_i)_{2k_i} (-1)^k}{k_i!} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\ & \quad H_{A+1,C+1:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda+1:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} -2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n \\ -\frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \end{bmatrix}: \right. \\ & \quad \left. \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right), \end{aligned} \quad (5.1)$$

where all conditions of (2.1) are satisfied.

Thus solution (3.6) of the problem reduces to

$$\begin{aligned} \phi(z, t) &= \frac{1}{z^{(4\rho+1)^2}} e^{-z^2/2} \sum_{s=0}^{\infty} \frac{2^s}{s!} e^{-(1+2s)K_i} \\ & H_s(z) \sum_{k_1=0}^{n_1/2} \dots \sum_{k_r=0}^{n_r/2} \prod_{i=1}^r \frac{(-n_i)_{2k_i} (-1)^k}{k_i!} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\ & H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda+1:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}, \begin{bmatrix} -2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n \\ -\frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \end{bmatrix}: \right. \\ & \quad \left. \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right), \end{aligned} \quad (5.2)$$

provided that all conditions of (2.1) are satisfied.

The expansion formula (4.1) reduces to

$$\begin{aligned} & 2^{(4\rho+1)/2} z^{2\rho} e^{-z^2} H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}: \right. \\ & \quad \left. \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) \prod_{i=1}^r y_i^{n_i/2} z_i^{\beta_i n_i} H_{n_i} \left(\frac{1}{2\sqrt{y_i z^{\beta_i}}} \right) \end{aligned} \quad (5.3)$$

$$\begin{aligned}
&= \sum_{s=0}^{\infty} \frac{2^s}{s!} H_s(z) \sum_{k_1=0}^{n_1/2} \dots \sum_{k_r=0}^{n_r/2} \prod_{i=1}^r \frac{(-n_i)_{k_i}}{k_i!} \frac{(1)^{k_i}}{4^{\beta_i k_i}} y_i^{k_i} \\
&H_{A+1, C+1: (B', D'); \dots; (B^{(n)}, D^{(n)})}^{0, \lambda+1: (\mu', \nu'); \dots; (\mu^{(n)}, \nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} -2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n \\ \frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \end{bmatrix}; \right. \\
&\quad \left. \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right),
\end{aligned}$$

valid if all conditions of (2.1) are satisfied.

Case II. For each $m_i = 1$, $A_{n_i k_i} = \binom{n_i + \gamma_i}{n_i} \frac{1}{(1 + \gamma_i)_{k_i}}$,

we have $S_{n_i}^1[y_i] \rightarrow L_{n_i}^{(\gamma_i)}(y_i)$; $i = 1, \dots, r$

Therefore, for Laguerre polynomials ([35], p.10, eqn. (5.1.6) and [34], p. 158), the main integral (2.1) reduces to

$$\begin{aligned}
&\int_{-1}^1 z^{2\rho} e^{-z^2} H_{2v}(z) L_{n_i}^{(\gamma_i)}(y_i z^{2\beta_i}) H_{A, C: (B', D'); \dots; (B^{(n)}, D^{(n)})}^{0, \lambda: (\mu', \nu'); \dots; (\mu^{(n)}, \nu^{(n)})} \\
&\quad \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) dz \\
&= \sqrt{\pi} 2^{2(\nu - \rho)} \sum_{k_1=0}^{n_1} \dots \sum_{k_r=0}^{n_r} \prod_{i=1}^r \frac{(-n_i)_{k_i}}{k_i!} \binom{n_i + \gamma_i}{n_i} \frac{1}{(1 + \gamma_i)_{k_i}} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\
&H_{A+1, C+1: (B', D'); \dots; (B^{(n)}, D^{(n)})}^{0, \lambda+1: (\mu', \nu'); \dots; (\mu^{(n)}, \nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} -2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n \\ \nu - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \end{bmatrix}; \right. \\
&\quad \left. \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right),
\end{aligned} \tag{5.4}$$

provided that all conditions (2.1) are satisfied.

Therefore, solution (3.6) of the problem reduces to

$$\begin{aligned}
\phi(z, t) &= \sum_{s=0}^{\infty} \frac{2^{s-2\rho-1/2}}{s!} e^{-(1+2s)Kt - z^2/2} \\
&H_s(z) \sum_{k_1=0}^{n_1} \dots \sum_{k_r=0}^{n_r} \prod_{i=1}^r \frac{(-n_i)_{k_i}}{k_i!} \binom{n_i + \gamma_i}{n_i} \frac{1}{(1 + \gamma_i)_{k_i}} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\
&H_{A+1, C+1: (B', D'); \dots; (B^{(n)}, D^{(n)})}^{0, \lambda+1: (\mu', \nu'); \dots; (\mu^{(n)}, \nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} -2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n \\ \frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \end{bmatrix}; \right. \\
&\quad \left. \begin{bmatrix} (b'): \phi' \\ (d'): \delta' \end{bmatrix}; \dots; \begin{bmatrix} (b^{(n)}): \phi^{(n)} \\ (d^{(n)}): \delta^{(n)} \end{bmatrix}; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right),
\end{aligned} \tag{5.5}$$

valid if all conditions of (3.1) are satisfied.

The expansion formula (4.1) reduces to

$$\begin{aligned}
& 2^{2\rho+1/2} z^{2\rho} e^{-z^2} \prod_{i=1}^r L_{n_i}^{(\gamma_i)}(y_i z^{2\beta_i}) H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix} \right. \\
& \left. [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}]; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) \\
& = \sum_{s=0}^{\infty} H_s(Z) \frac{2^s}{s!} \sum_{k_1=0}^{n_1} \dots \sum_{k_r=0}^{n_r} \prod_{i=1}^r \frac{(-n_i)_{k_i}}{k_i!} \binom{n_i + \gamma_i}{n_i} \frac{1}{(1 + \gamma_i)_{k_i}} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\
& H_{A+1,C+1:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda+1:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix} : \left[\frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r : \alpha_1, \dots, \alpha_n \right] : \right. \\
& \left. [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}]; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right),
\end{aligned} \tag{5.6}$$

provided that all conditions of (2.1) are satisfied.

Case III For each $m_i = 1$, $A_{n_i k_i} = \binom{n_i + \xi_i}{n_i} \frac{(1 + \xi_i + \eta_i + n_i)}{(1 + \xi_i)_{k_i}}$,

we have $S_{n_i}^1[y_i] \rightarrow P_{n_i}^{(\xi_i, \eta_i)}(1 - 2y_i)$,

Therefore, for Jacobi polynomials ([35], p.68, eq. (4.3.2) and [34], p. 159), (2.1) reduces to

$$\begin{aligned}
& \int_{-\infty}^{\infty} z^{2\rho} e^{-z^2} H_{2\nu}(z) \prod_{i=1}^r P_{n_i}^{(\xi_i, \eta_i)}(1 - 2y_i z^{2\beta_i}) H_{A,C:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \\
& \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix} : [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}]; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) \\
& = \sqrt{\pi} 2^{2(\nu - \rho)} \sum_{k_1=0}^{n_1} \dots \sum_{k_r=0}^{n_r} \prod_{i=1}^r \frac{(-n_i)_{k_i}}{k_i!} \binom{n_i + \xi_i}{n_i} \frac{(1 + \xi_i + \eta_i + n_i)}{(1 + \xi_i)_{k_i}} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\
& H_{A+1,C+1:(B',D');\dots;(B^{(n)},D^{(n)})}^{0,\lambda+1:(\mu',\nu');\dots:(\mu^{(n)},\nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix} : \left[\nu - \rho - \beta_1 k_1 - \dots - \beta_r k_r : \alpha_1, \dots, \alpha_n \right] : \right. \\
& \left. [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}]; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right),
\end{aligned} \tag{5.7}$$

provided that all conditions (2.1) are satisfied.

Therefore, solution (3.6) of the problem reduces to

$$\phi(z, t) = \sum_{s=0}^{\infty} H_s(z) e^{-(1+2s)Kt - z^2/2} \tag{5.8}$$

$$\begin{aligned}
& \sum_{k_1=0}^{n_1} \cdots \sum_{k_r=0}^{n_r} \prod_{i=1}^r \frac{(-n_i)_{k_i}}{k_i!} \binom{n_i + \xi_i}{n_i} \frac{(1 + \xi_i + \eta_i + n_i)}{(1 + \xi_i)_{k_i}} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \\
& H_{A+1, C+1: (B', D'); \dots; (B^{(n)}, D^{(n)})}^{0, \lambda+1: (\mu', \nu'); \dots; (\mu^{(n)}, \nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} -2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n \\ \frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \end{bmatrix}; \right. \\
& \left. [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}] ; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right), \\
& [(d'): \delta'] ; \dots ; [(d^{(n)}): \delta^{(n)}] ; \frac{4^{\alpha_1}}{4^{\alpha_1}}, \dots, \frac{4^{\alpha_n}}{4^{\alpha_n}}
\end{aligned}$$

valid if all conditions of (2.1) are satisfied.

The expansion formula (4.1) reduces to

$$\begin{aligned}
& 2^{2\rho+1/2} z^{2\rho} e^{-z^2/2} H_{A, C: (B', D'); \dots; (B^{(n)}, D^{(n)})}^{0, \lambda: (\mu', \nu'); \dots; (\mu^{(n)}, \nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \right. \\
& \left. [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}] ; x_1 z^{2\alpha_1}, \dots, x_n z^{2\alpha_n} \right) \prod_{i=1}^r P_{n_i}^{(\xi_i, \eta_i)} (1 - 2y_i z^{2\beta_i}) \\
& = \sum_{s=0}^{\infty} H_s(Z) \frac{2^s}{s!} \sum_{k_1=0}^{n_1} \cdots \sum_{k_r=0}^{n_r} \prod_{i=1}^r \frac{(-n_i)_{k_i}}{k_i!} \frac{y_i^{k_i}}{4^{\beta_i k_i}} \binom{n_i + \xi_i}{n_i} \frac{(1 + \xi_i + \eta_i + n_i)}{(1 + \xi_i)_{k_i}} \\
& H_{A+1, C+1: (B', D'); \dots; (B^{(n)}, D^{(n)})}^{0, \lambda+1: (\mu', \nu'); \dots; (\mu^{(n)}, \nu^{(n)})} \left(\begin{bmatrix} (a): \theta', \dots, \theta^{(n)} \\ (c): \Psi', \dots, \Psi^{(n)} \end{bmatrix}; \begin{bmatrix} -2\rho - 2\beta_1 k_1 - \dots - 2\beta_r k_r: 2\alpha_1, \dots, 2\alpha_n \\ \frac{s}{2} - \rho - \beta_1 k_1 - \dots - \beta_r k_r: \alpha_1, \dots, \alpha_n \end{bmatrix}; \right. \\
& \left. [(b'): \phi'] ; \dots ; [(b^{(n)}): \phi^{(n)}] ; \frac{x_1}{4^{\alpha_1}}, \dots, \frac{x_n}{4^{\alpha_n}} \right),
\end{aligned} \tag{5.9}$$

provided that all conditions of (2.1) hold true.

Similarly specializing the parameters of H -function, we can derive the similar results involving different special functions which may be useful in mathematical analysis and physical problems.

REFERENCES

- [1] Bhonsle, B.R., Heat Conduction and Hermite Polynomials, *Proc. Nat. Acad. Sci., India*, **36** (1966), 359-360.
- [2] Chandel, R.C.S. and Bhargava, S.K., A problem on the cooling of a heated cylinder, *Jour. Maulana Azad College Tech.*, **15** (1982), 99-103
- [3] Chandel, R.C.S. and Yadava, H.C., Heat conduction and multiple hypergeometric function of Srivastava and Daoust, *Indian J. Pure. Appl. Math.* **15(4)**, (1984), 371-376.
- [4] Chandel, R.C.S. and Gupta, A.K., Head Conduction and H -function of several variables, *Jour. Maulana Azad College, Tech.*, **17** (1984), 85-92.
- [5] Chandel, R.C.S. and Gupta, A.K., Use of multivariable H -function of Srivastava and Panda in cooling of a heated cylinder, *Pure Appl. Math. Sci.*, **25** (1987), 43-48.

- [6] Chandel, R.C.S. and Tiwari, A., Multiple hypergeometric function of Srivastava and Daoust and its applications in two boundary value problems, *Jñānābha* **23** (1993), 97-103.
- [7] Chandel, R.C.S. and Sengar, S., On two boundary value problems, *Jñānābha* **31/32** (2002), 89-103.
- [8] Chandel, R.C.S. and Sengar, S., A problem of heat conduction in a rod under the Robin condition, *Jñānābha*, **33** (2003), 131-138.
- [9] Chandel, R.C.S. and Singh, Y.K., Two boundary value problems, *Indian J. of Theoretical Physics*, **53**(4) (2005), 339-350.
- [10] Chandel R.C.S. and Tiwari, K.P., A generalization of multivariable polynomials, *Jñānābha*, **38** (2008), 153-160.
- [11] Chandel, R.C.S. and Sengar Shailja, Multivariable generalized polynomials defined through their generating function, *Jñānābha*, **40** (2010), 105-112.
- [12] Chandel, R.C.S. and Sharma, S., A multivariable analogue of a class of polynomials, *Jñānābha*, **45** (2015), 95-102.
- [13] Chandel, R.C.S. and Kumar Hemant, Contour Integral representation of two variable generalized hypergeometric functions of Srivastava and Daoust with their applications to initial value problems of arbitrary order, *Jñānābha*, **50** (Jun 2020), 232-242.
- [14] Chaurasia, V.B.L. and Patni, R., A heat conduction problem and certain product of the multivariable H -function with two general classes of polynomials, *Jñānābha*, **27** (1997), 1-9.
- [15] Chaurasia, V.B.L. and Gupta, N., A solution of partial differential equation of heat conduction in a rod under Robin condition, *Jñānābha*, **27** (1997), 31-45.
- [16] Churchill, R.V., *Operational Mathematics*, Mc Graw-Hill, New York, 1958.
- [17] Erdelyi, A. et al., *Tables of Integral Transforms*, **2**, McGrawhill Book Company, Inc., 1954.
- [18] Kumar Hemant and Rai Suryakant, Multiple Fractional Diffusions via multivariable H -function, **50** (June 2020), 253-264.
- [19] Kampe de Feriet, Heat conduction and Hermite polynomials, *Bull. Calcutta Math. Soc., The Golden Jubilee Commemoration Vol.* (1958-59), 193-204.
- [20] Lebdev, N.N., *Special Function and Their Applications*, Prentice Hall Inc. Engle Wood, Cliffs, N.J., 1965.
- [21] Olsson, P.O.M., A hypergeometric function of two variables of importance in perturbation theory, I, II, *Ark. Fys.* **29** (1964), 459-465, **30** (1965), 187-191.
- [22] Rainville, E.D., *Special Functions*, Macmillan Company, New York, 1965; Reprinted by Chelsea Pub. Co., Bronx., New York. 1971.
- [23] Singh, F., Use of generalized hypergeometric function in cooling of a heated cylinder, *Math. Education (Siwan)* **3A** (1969), 37-40.
- [24] Singh, F., Expansion formulae for Kampe de Feriet and radial wave functions and heat conduction, *Def. Sci. Jour.*, **21** (1971), 265-272.
- [25] Srivastava, H.M., A contour integral involving Fox's H -function, *Indian J. Math.*, **14** (1972), 1-6.
- [26] Srivastava, H.M. and Daoust, M.C., Certain generalized meumann expansions associated with the Kampe de Feriet function, *Nederl. Akad. Wetensch, Proc. Ser. A* **72**, *Indag. Math.*, **31** (1969), 449.
- [27] Srivastava, H.M. and Daoust M.C., On enterian integral associated with Kampe de Feriet's function *Publ. Inst. Math. (Beograd) (N.S.)*, **9 (23)** (1969), 199-202.
- [28] Srivastava, H.M. and Daoust, M.C., A note on the convergence of Kampe de Feriet's double hypergeometric series, *Math. Nachr.*, **53** (1972), 151-159.
- [29] Srivastava, H.M. and Karlsson, P.W., *Multiple Gaussian Hypergeometric Series*, John Wiley and Sons, New York, 1985.

- [30] Srivastava, H.M. and Panda, R., Some expansion theorems and generating relations for the H -function of several complex variables, *Comment. Math. Univ. St. Paul.* **24** fasc. **2** (1975). 119-137.
- [31] Srivastava, H.M. and Panda, R., Expansion theorems for the H -function of several complex variables, *J. Reine Angew. Math.* **288** (1976), 129-145.
- [32] Srivastava, H.M. and Panda, R., Some bilateral generating functions for a class of generalized hypergeometric polynomials, *J. Reine Angew Math.*, **283/284** (1976), 265-274.
- [33] Srivastava, H.M., Gupta, K.C. and Goyal, S.P., *The H-Functions of One and Two Variables with Applications*, South Asian Publishers, New Delhi, 1982.
- [34] Srivastava, H.M. and Singh, N.P., The integration of certain products of multivariable H -function with general class of polynomials, *Rend. Circ. Mat. Palermo*, (2) **32** (1983), 157-187.
- [35] Szego, G., *Orthogonal polynomials*, *Amer. Math. Soc. Colloq. Publ.* Vol. **23**, Fourth Edition, *Amer. Math. Soc.*, Providence, Rhode Island, 1975.