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Abstract 

In the present paper, First we evaluate an integral involving the product of multivariable H-function of 

Srivastava and Panda ([30],[31],[32]), several generalized polynomials of Srivastava [25], a 

generalizations of multivariable polynomials of Chandel and Tiwari [10] and Hermite Polynomials; and 

then we make its applications in solving a problem on heat conduction given by Bhonsle [1]. One 

expansion formula is also established. Finally, we also discuss special cases for different polynomials. 
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1. Introduction 

Appell’s functions and the functions related to them have many applications in mathematical physics 

([19],[20],[21]), Srivastava, Gupta and Goyal [33]) have discussed a problem on heat conduction in a 

finite bar using H-function of two variables of Srivastava and Panda ([30],[31],[32]). Singh [23] used 

generalized hypergeometric function in a problem of cooling of a heated cylinder. Further Singh [24] 

evaluated some integrals involving Kampe de Feriet function and one of them was employed to obtain a 

solution of a problem on heat conduction given by Bhonsle [1]. Chandel and Yadava [3] have evlauted 

certain integrals involving multiple hypergeometric function of Srivastava and Daoust ([26],[27],[28]); 

also see Srivastava and Karlsson [29, p.37, eqns. (2.1) to (2.3)], and their applications have been given in 

solving the same problem on heat conduction. Chandel-Bhargava [2] have used generalized Kampe de 

Feriet function of two variables due to Srivastava-Daoust ([26],[27],[28]), while Chandel-Gupta [5], have 

used multivariable H-function of Srivastava and Panda ([30],[31],[32]; also see Srivastava Gupta and 

Goyal [33]) in a problem of colling of a heated cylinder. Chandel and Gupta [4] have also used H-

function of several variables in a problem of heat conduction. Chandel and Tiwari [6] employed multiple 

hypergeometric function of several variables due to Srivastava and Daoust ([26],[27],[28]) in two 

boundary value problems. Chaurasia and Patni [14] have discussed a heat conduction problem involving 

the product of multivariable H-function and two general classes of polynomials, while Chaurasia and 

Gupta [15] have discussed a solution of partial differential equation of heat conduction in a rod under 

Robin condition. 

Recently Chandel and Sengar [7] have discussed two boundary value problems on heat 

conduction involving the product of multivariable H-function of Srivastava-Panda ([30],[31],[32]) and 

several generalized polynomials of Srivastava [25] and their special cases have been discussed. Further 
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Chandel and Sengar [8] have discussed a problem on heat conduction in a rod under the Robin condition 

involving the product of above multivariable H-function and several generalized polynomials of 

Srivastava [25} and a generalization of multivariable polynomials of Chandel and Tiwari [10]. 

 

Chandel and Sengar [11] discussed multivariable generalized polynomials defined through their 

generating function. Also, Chandel and Sharma [12] discussed a multivariable analogue of a class 

polynomials. Further Chandel and Kumar [13] discussed a contour integral representation of two variable 

generalized hypergeometric function of Srivastava and Daoust. Also, Kumar and Rai [18] discussed 

multiple fractional diffusions via multivariable H-function. 
 

First, we evaluate an integral involving the product of multivariable H-function of Srivastava and 

Panda ([30],[31],[32]), several generalized polynomials of Srivastava [25] and Hermite polynomials; and 

then we make its applications in solving a problem on heat conduction given by Bhonsle [1]. One 

expansion formula is also established. Finally, we also discuss special cases for different polynomials. 

 

2. Main Integral 

In this section, we evaluate the integral 
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where,        are Hermite polynomials (see Rainville [22]).   
 [ ] are generalized polynomials 

of Srivastava [25],  
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 (j=1,…,r) are arbitrary 

parameters real or complex independent of            

This integral will be quite useful in our further investigations. 
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Proof. Multiplying both sides of Lebdev equation [20, (4.16.1)] by     
       and using orthogonal 

property of Hermite polynomials [22], we have 
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3. Application of Heat Conduction. 

Bhonsle [1] has employed Hermite polynomials in solving the partial differential equation 
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where         tends to zero for a large value of t and when | |   , this equation is related to the 

problem of heat conduction due to Churchill [16]. 
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 The solution of (3.1) given by Bhonsle [1] is 
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where all conditions of (2.1) are satisfied. 
 

Thus, substituting the value of AS from (3.5) in (3.3), the solution of the main problem is given by 
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provided that all conditions of (2.1) are satisfied. 

 

4. Expansion Formula. 

An appeal to (3.4) and (3.6) gives the following expansion formula 
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valid if all conditions (2.1) are satisfied: 
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5. Special Cases. 

Case I. For each             
       , we have 
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Therefore, for Hermite polynomials ([35], p. 106, equation (5.5.4) and [34], p. 158) our main integral 

(2.1) reduces to 
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where all conditions of (2.1) are satisfied. 

 

Thus solution (3.6) of the problem reduces to 

       
 

        
      ∑

  

  
            

     (5.2) 

     ∑  ∑ ∏
        

     

   

  
  

     

 

   

    

    

    

    

 

 
    (     )   (         )

      (     )   (         )
(
[             ] 

[             ] 

[                           ] 

* 
 

 
                      +  

 

[       ]   [(    )     ] 

[       ]   [(    )     ] 

  

   
   

  

   
)   

provided that all conditions of (2.1) are satisfied. 

 

The expansion formula (4.1) reduces to 
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valid if all conditions of (2.1) are satisfied. 
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Therefore, for Laguerre polynomials ([35], p.10, eqn. (5.1.6) and [34], p. 158), the main integral (2.1) 
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Therefore, solution (3.6) of the problem reduces to 
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valid if all conditions of (3.1) are satisfied. 

 

The expansion formula (4.1) reduces to 
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Therefore, for Jacobi polynomials ([35], p.68, eq. (4.3.2) and [34], p. 159), (2.1) reduces to 
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The expansion formula (4.1) reduces to 
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provided that all conditions of (2.1) hold true. 

 

Similarly specializing the parameters of H-function, we can derive the similar results involving 

different special functions which may be useful in mathematical analysis and physical problems. 
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