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Abstract

Summability is defined as a division of mathematical analysis where in an infinite series which is
divergent by conventional summation methods is made to converge to a sum say‘w’ & become summable
through dissimilar summation methods. Ernesto Cesaro gave one such method known as C Method in
which (C, 1) is the notation for ordinary Cesaro summation & (C, a) is the notation for generalized
Cesaro summation. Euler provided summation formula which sums infinite series called (E, 1)
summation method. Generalized (E, 1) (C, 1) to (E, 1) (C, a) (a > 0) product summation is given by
S.N.Mishra & Harsh Joshi [7]. The objective of this paper is to generalize (E, 1)(C, a) (a0 > 0) to (E,
1)(C, a, B) (o> 0)(B>-1) so that the series which can’t be made summable by (E, 1)(C, 1) & (E, 1)(C,
a) methods can be made summable by (E, 1)(C, a, B) (o> 0)( p > -1)methods.
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1. Introduction
Let wy,wy, Wy ,Ws3,.....w, denote partial sums of infinite series Xs,. The series Xs, converges to a
particular sum ‘w’ in (C, 1) means if
_ Wot Wi+ W+ Wit Wy
- s+1

)

As s—oo. (C, o) Summability of an infinite series Zs,, is given by
1
(C, (X) = (n+a) Z?:O(s;a)wn_s - W

1 -
(C7 (X,) = (n+a) 2220(n ;+a)Wn — S dS n—o0,
a

And (C, a, ) summability of an infinite series s, iS given by

(C, a, B) = (n+i+3) Islzo (n—;:o{?ﬁ) W, 2 W, when o > 0, B>-1.
oa+f

(C, a, B) Summability Method
Let f(x) be any function which is Lebesgue integrable in any finite interval of x > 0 and bounded in some
right hand neighborhood of the origin. Let d,, 5 (x) and the (C, @, ) transform of f(x) is defined by
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P f(x)a=0
“peo= 7r§i:§:i)xal+g Jo x-y*-1yBf(y)dy (a>0,8>-1)

If for x >0, the integral defining d a, B (X) exists and if it tends to w, as x tends to infinity, we say that
f(x) is summable (C, a, ) to w and we write f(x) -»w(C, a, ).

The series Xs,, is Euler summable (E, 1) to a sum w if.

(E; D) 2% 3:0 (Csl) W —W, s § — o0,

Then (C, a, B) (E, 1) summability of series s, is given by,

cPEL= ﬁ PN (S;‘_XFEB) El — w, when o> 0, 3>-1 and n — o.
a+p

Let f(x) be a 27 periodic function of x and Lebesgue integrable in the interval (-w, ). The Fourier series
of f(x) is given by

f(X) ~ S+ X1 (anCosnx+by, sinnx) =X ; Ap (X).
The conjugate series is given by
Ynzq(ap cosnx — by, sinnx) = Y724 By (X).
We have following assumptions
d@)=Ff(x+t)+f(x-t)—2f(X). ¥ () =f(x + 1) -f(x-1)
1 sin q+
1) = el (C1537) 2 o (5) o)

cos(q+—)t

_ s+a+B) 1 s
n(t) (n+a+B) | Z [( a+p ); a=0 (q) TEZ:”
2
where t = [%], where t denotes greatest integer not greater than %

2. Main Theorems
Theorem 1: Let {P,} be a positive monotonic, non increasing sequence of the real constant such that

Py=)8 Ps = o0, n— oo, If
o) = f |@(u)|du = O(W) ast— +0.

t

wherea(t) and B(t)are positive monotonic and non-increasing function of t such that
log (n+1) =O (Ja(n + 1) + B(n + 1)]P,44) as n— co.

Then Fourier series is summable to (E, 1) (C, a, B) to f(X).

Theorem 2: Let {P,} be a positive monotonic, non increasing sequence of the real constant such that
P,=)Y2P, » o0, N> oo, If

o) = f lo(w)[du = O(W) as n— oo
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where a(t) and P(t)are positive monotonic and non-increasing function then conjugate series is
summable to f(x)= i f02“ cp(t)cot(%) dt.

3. Required Lemmas

Lemma 1: | Hy(f) |= O (n+1). For0 <t < —

Proof: For 0 <t < - , sin nt < n sint
n+1

in(q+32 )t
Ha(0= vy ol jeo (3) s

SlnE
< s | 2l £ o () 2+

= W | Z‘s’=o[(sﬁgs)% 4=0 (Z) (2s + 1)|
(2n+1) = (S+a+B)

n+a+B o+ B
a+B s=0

<(2n+1)(n+1+0L+B)
2n(a+ B+ 1)

= O (n+1).

n+1

Lemma 2: | H,(t) |= O (— ) For—<t<n

. 1 . , .t t
Proof: For o t < m, applying Jordan’s lemma sin 220
< < n s+a+B) 1 ws s sin(q+%)t
Isin nt|< 1. Hy ()< (HT:L‘EB) S=0[( wtB ); q=0 (q) sin ]
n S
< 1 Z[<s+a+8) 1 (s)]
- n+a+p a+ 25
Zt( a+p )S=0 B q=0 a
n
st+a+f
n+a+6 z ( a+f )
ot+[3 s=0
n
(n +1+a+ B)
n+a+6 at+1+p
a+B s=0

n+a+1+f (n_+1)
2t(a+1+6) -

TH (D | =0 (ML 1
Lemma3.|Hn(t)|—O(t).ForOStSn+1

Proof: For0 <t < —sm— and |cos nt|< 1,

+1)¢
|Hay () | < (HT::EB) Is1=0[(SJorcTL;B) 7 Za0 (Z) M]

sin_
2
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1 n [(S"'O‘"'B)l s (5) |Cos(q+%)t|]

< Tm s=0L\ a+p )25 ~q=0\q |sin|
1 n statB) Lys  (s)_1-
<y e )i ()
1 . <s+a+B)1 \ (S)]
n+o+f o+ F
2e("5i) = =
1 ZH: [(s + o+ B)
n+a+p o+
Zt( a+pB )SZO B
<n+a+1+B
T 2t(a+1+PB)
_ oot
=0(=)
Lemma 4: For 0 <a < b < o,0 < t < mand for any n, we have | Ha(8)[= 0 (°).

t
- 1

1 .t
Proof: For0 < — < t<m,sin->
n+1 2 T

s () A (0) =y

Hy (0 | < —rermy 2= =
| n(t)l—m(n;igB) s=0L\ oa+p J2549=0\q sin%

1 n [(S"'O“"B)l s (S)lcos(q+%)t|]

= s=0 =0 Lt
("o’ b S 2aRa) sing

1 n [(5+°‘+3)l s (S) Cos(q+%)t]

= n+o+p s=0 + s ~4q=0 t
2n("5EP) atB /2 q L

< i Sl (155) 5 B () Re i + )
o

< —mre ol (P15 F) 35 250 (5) Re (expat)][lexp (1]

2("gp) TN B
1 S s+t B\ 1 > s .
< W;[( «+B )? Re ;) (q) (exp(iqt))]
-1 S
1 s+a+p\1 S .
< mzo[( wrp JaRe ) (o) (i)
+ Pl L) e () )
=H;+H,
iy = ey | 235817025 3 Reeo (3)) CexpCian]
o < oo (L) 5 Re (2520 (3))] N expGian)]
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T 1 —11(s+a+B
Hl < zt(n-(:(}.-[ls—ﬁ) ‘St=0[(sa:x_8 )]

— n+1 n+1
H, < > Similarly, H, < T

4, Proof of Theorems

Proof of Theorem 1: Using Riemann Lebesgue Theorem and Titchmarsh[4]. S,(f; X) of the series is
given by

Sn(f; )~ () = = [ 80

n(n+ )t

2

Then (C,a, ) summation of S, (f; x) is given by

a st+a sin(s+%)t
CH 100 =y OO

Now (E, 1) (C,a, B) summation of S, (f; x) is given by

BV 100 =5 sarmy fo 000 T () Ly, (2) 2y

sin-
2

= [T@(OH, (Ddt.

Now, we have to prove that,

= [T ®(OH, (H)dt = (1) asn - oo,

For0 < 6 < m,
= foT B(OH, (Ddt+ [5 BOH, (Ddt +[T O(OH, (Dt

=+ L+ 1.

1
Then, I; < [p+1]@(1) |[H, (H)]dt,
From Lemma 1, | Hy(t) | = O (n+1)

=0 (n+1) [+ 10(9) [IH, (V]

1
Also, d(t) = o(—F——F+—
= R
1
) ES
=0 (n+1) [oG—r—n )0l
Ho(B)+B(E))p:
. )
nfa(m+1)+BMm+1)|Pp4q
_ 1
-0 ([a(n+1)+B(n+1)]Pn+1)
1
=0 )

log(n+1)

=0 (n+1) o
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=0(1) asn— o

From Lemma 2,
n+1

Hy () =0 ().

Integrating by parts,
=0 (1) O[3, + 15 2y,

n+1 n+1

1

w0

By Lemma 1, @(t) = o(

Lett———> dt = _d_;-
u
Now we have,
E 1
R n+1 —
=0+ 10l >+B<n>]pn) i o Crpam)
=0 (D) 0 Grrperrns * 0 arnrsmrnipey)
N 1
=0 (1) [0 orrpy) * © (g
n+1 n+1
(log(n+1)) (log(n+1))
=0(1)+o0(1) as n— .

Similarly,I; = [T @(OH, (D) dt=0(1) asn-> oo.

Proof of Theorem 2: If S, (f;x)denotes partial sum of conjugate series then from Riemann Lebesgue
theorem and using Titchmarsh [4].

cos(n+ )t

Sn(f; X)‘—f 4Q)

2

Then,Cg‘Bsummation of S, (f; x) is given by,

cos(s+%)t
CrP-(x) = ) o P(OIZS Lol
2

Now (E, 1) (C,a, B) summation ofS, (f; x) is given by

ELc®

ELCP- f(x)

(s+)t
(n+cx+8)f @(t) Xs-= [(S;igs)% $=0 (Z) = ,S =—dt]

a+p sing
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= [, e®[Hy(®]dt

Now, we have to prove that,
= [ e®[HyO]dt

=0(1)
For0<é <m,

= e[ Hy(D]dt
‘f““@(t) H,(©]dt+ [ +1(P(t) H, (D] dt+f8 e([H

=1+ 5415,
N _
Where I; = [p+1 @(t)[H,(D)]dt

;=% e®[H,ldt

n+1

and 15= [ (O [Hy (®]dt

then, 1, < fﬁ 00 [[H, (O)]dt.
<0 (%) [+ (V) dt]
<O (n)fof‘? l(t)] dt
Also, By Theorem 2,
@) = O(W)
=0 (nfp O(W) dt

1
n[a(n+1)+pn+ 1)]Pn+1)

=0 (n+1) o(

1

=0 (n+1) 0([a(n+1)+ﬁ(n+1)]Pn+1)

As logn=o[(a(n+ 1)+ B(n+ 1))P,41]
=0 ( n+1 )

log(n+1)

=o0(1) asn— o
Now we consider,

15 =[5 le®I[F0

n+1

From Lemma 4, H,, (t)= o(n—+1).

H,, (D]dt

asn — oo,

39
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Integrating by parts,
=0 (n+1) O[3 “dy]

n+1

=0 (n+1) O [ (23, + [ 24y,

n+ n+1
By Theorem 2,

),

=0 (n+1) O [o(

o) =o

W) n11+ fnil 0(m)olt]

1

=0(n+1)o [([a(n+1)+ﬁ(n+1)]Pn+1) fnil o ( (t)+s(t))pt)dt]
Lett=2—dt= -5
u

1
1 1

n+1
[a(n+1)+B(n+1)]Pn+1) f5 o(u[a(u)+8(u)]1’u)du]
1 1 +1
) + 0o )5 du]

[a(n+1)+B(n+1)]Pyq nfa(n+1)+B(n+1)]Pn4q

=0 (n+1) O [o (

= O(n+1)O[o(

1 1

=0 (1) O o sy arnrparnirn ]

By Theorem 1,
Log (n+1) =0 (a(n + 1)Py44)

:O[O( n+1 )+0( n+1 )]

log(n+1) log(n+1)
_ n+1 n+1
- (log(n+1)) * (log(n+1))
=o(1)+o0(2) as n— oo,
=0(1) as n— oo,

By Regularity Condition of Summability,

I3 < [ leIH,ldt =0 (1), as n— oo,

Then, EXC*P- T(x) = 0 (1). as n— oo, completes proof of theorem.
The above result generalizes to (E, 1) (C,a) when 3 = 0 [7].
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