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Abstract

In this paper, a two-layer unsteady state planar mathematical model is proposed to study mucus transport
in human lung airways by considering mucus as a viscoelastic fluid and serous layer as a Newtonian fluid
by taking into account the effect of porosity parameter due to immotile cilia forming porous matrix in the
serous sub-layer in contact with the epithelium. The effect of shear stress induced by air-motion due to
forced expiration and acceleration due to gravitational force are also considered in the model. It is
observed that mucus transport rate increases as the pressure gradient, the shear stress and porosity
parameter increase, but it decreases as its viscosity increases. It is also observed that mucus transport rate
decreases as the viscosity of serous layer fluid increases, but any increase in mucus viscosity at its higher
values does not seem to affect the mucus transport. It is also shown that mucus transport rate decreases as
its modulus of elasticity or its density increases. It is also observed that the mucus transport rate decreases
as the thickness of serous layer fluid or transport duration increases.
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1. Introduction

The normal mechanics of mucus transport in the human lung airways is constantly swept from upper to
lower airways to remove mucus. Several investigators have studied the mechanics of mucus transport
theoretically and several experiments have been conducted to study how mucus flows in human lung
airways in healthy and unhealthy states. (Agarwal and Verma [1], Blake [2], Hanliang and Kanso [3],
King et al. [4], Verma and Tripathee [5], Verma and Rana [6], Verma [7, 8], etc.). Some primitive
mathematical models were developed based on the motion of motile cilia by considering the effects of
flows of serous layer fluid and mucus on cilia. Some investigators have incorporated the effects of visco-
elasticity, flow duration, the thicknesses and viscosities of serous layer fluid and mucus on mucus
transport mechanics.

Agarwal and Verma [1] have presented a two-layer planar unsteady state model for mucus transport
due to coughing. They have used Dirac-delta function for the pressure gradient generated due to coughing
and analyzed the results graphically. Blake [2] discussed the role of acceleration due to gravity and
airflow on mucus transport in two layers Newtonian fluid model. Hanliang and Kanso [3] have studied
mucociliary transport in healthy and diseased environments and shown that a healthy mucus layer
enhances the performance of mucociliary system. In contrast, in the diseased environments, mucus
hinders transport and stiffer mucus leads to a substantial decrease in transport efficiency. King et al. [4]
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have developed a mathematical model to study the effect of mucus visco-elasticity on mucus transport.
Verma and Tripathee [5] have studied mucus transport in human lung airways by taking the effects of
mucus visco-elasticity, air-motion, cilia beating and porosity parameter in steady state. They have
presented and analysed a two-layer circular steady state mathematical model. Verma and Rana [6] have
studied mucus transport in the human lung airways by presenting two-layer fluid model taking mucus as a
visco-elastic fluid. Verma [7,8] has presented planar as well as symmetrical mathematical models to
estimate the rate of mucus transport in human lung airways by taking mucus as a visco-elastic fluid. The
Laplace transform technique has been used in solving the models. It has been found that mucus transport
rate increases when the shear stress caused by air-motion and the pressure gradient increase. It has been
also found that an increase in the elastic modulus of mucus results a decrease in its transport rate.

In view of above, in this paper, we present a two-layer unsteady state planar mathematical model to
study the transport of serous layer fluid and mucus in the human lung airways by taking the effects of the
pressure gradient, the shear stress induced by air-motion, acceleration due to gravitational force and
porosity parameter due to certain immotile cilia forming porous matrix by considering serous fluid as
Newtonian and mucus as visco-elastic fluid.

2. Mathematical Model

The physical situation of transport of serous fluid and mucus is shown in Fig.1. The model consists of two
fluid layers; namely serous fluid layer and mucus layer. The serous fluid is considered as Newtonian fluid
while mucus is considered as visco-elastic fluid. Again, the serous fluid layer is divided into two sub-
layers; one in touch with the epithelium and other in touch with mucus layer. It is assumed that a porous
matrix is formed by certain immotile cilia in serous sub-layer in touch with the epithelium. No net flow is
assumed in the serous sub-layer in touch with the epithelium. The effects the shear stress induced by air-
motion, the pressure gradient and acceleration due to gravitational force are also considered in the model.
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Figure 1. A planar two- layer fluid model for mucus transport

The equations describing the transport of mucus and serous layer fluid under the unsteady state
condition and low Reynolds number flow approximations are taken as follows:

Region-I: Serous layer (h, <y < hy):

oug

) 92u
ps 5t == (£~ psgcost) + us (1)

Region-I1: Mucus layer (hg <y < h,):
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where t is the time, p represents constant pressure across the layers; ug and u,, are the velocity
components of the serous fluid and mucus in x-direction respectively. po,, o, are densitiesand f, 4,

are viscosities of serous fluid and mucus respectively; t,, is the shear stress in the mucus layer; A(= “Tm)

is the relaxation time; G is the modulus of elasticity, g is the acceleration due to gravitational force and 6
is the angle made by the airway with the vertical. Here, h, denotes the average thickness measured from
the epithelium’s surface to the tips of cilia forming porous matrix, hy denotes the thickness measured from
the epithelium’s surface to the surface between the serous sub-layer and mucus; and h,, denotes the
thickness measured from the epithelium's surface to the mucus-air interface. Equation (3) provides a
relationship between the shear stress and rate of strain for a visco-elastic fluid. The following are chosen
as initial, boundary and matching conditions for the system of equations (1)-(3).

Initial Conditions

0Ty oup,

us =0, u, =0,7,, =0, at=O,W=0 att =10 4)
Boundary Conditions
Jug bt
Us =p——, Y = N,
dy
>0 (5
Tm = Tq y=hpyt
>0 (6)

where f is the porosity parameter due to porous matrix formed by immotile cilia. Condition (5)
incorporates the effect of immotile cilia, which happens in some diseased state where cilia beating ceases.
Condition (6) incorporates the shear stress caused by the air-motion.

Matching Conditions
Us = Uy = Uy, y

= hy ™
Jug
Us W =Tm y
= hy )

where U; denotes the velocity at the mucus-serous interface which is to be determined. The conditions
(7) and (8) imply that velocities and shear stresses that are continuous at the interface of mucus-serous layer.

3. Analytical Solution

Solving (1)-(3) and applying initial, boundary and matching conditions (4)-(8) , we get
__ — | sinhks(y — he) + Bks coshks(y — he)

Us = Y1 Sinh ky (hy — hy) + Bk, cosh ke (hg — hy)

Pbs [sinh ks(hs—hg)+sinh kg(y—hg)—sinh kg(y—he)+Bks{cosh kg(hs—he)—cosh ks(y—he)}]
Sps sinh kg(hs—he)+Bks cosh kg(hs—h,)

(9)



Role of Pressure Gradient 45

_7, coshk,,(y —h,,) kT, sinhk,,(y— hs)
Him Lcoshky (B — hs) ~ Spm coshkm(h — hg)

¢ [coshk,,(h,, —hg) — cosh km(y hn)
B Spm [ coshk,, (h, ] (10)
where U, is given by
7, [“S"ij;t:s"cﬁf;ﬁt’jfs"sz + kypA(S) tanh Ky (hy — )| = T sech Ky (i — h)
=22 tanh ey, (i, — he) — 25 1?;:2#:;:’3’; e) (12)
ksz—if:k 2 pmS(S+a)/1(S)—% —#i o ——psgcose d)m:——pmgcose

where S is Laplace transform variable and bar (—) denotes Laplace transform of the corresponding
functions.

The volumetric transport rates in the two layers (serous and mucus) are respectively defined as follows:
hg _ — hm —
= fh: i,dy and Q= fhs Uy, dy

which after using equations (9) and (10) computed and are given below:

_ ks(hs he) ks(hs—he) | 1
— U, tanh =———=4fkg tanh7+ [i’ks
QS ks |1+Bks COth ks(hs— he)] [(h ) N _{1+Bks cothkg(hs— he)}] (12)
N 171 ¢m 1
Qm = g tanh Ky (o = h) + 72 [1 = sechkn (hn = )] = 22 [y — hy) = = tanh kyn (i — b))
(13)

Here, Q; and Q,, are constants as fluid continuity equation is considerable. Hence, from equations

(12) and (13), it can be noted that (— z—z) is also constant. So, it can be replaced by the pressure drop

over the length ‘L’ of the cilia forming porous matrix zone. Thus, in this case, the expressions for
transport rates brcome:

_ U1 tanhks(hs he)+[}ks ¢so h tanhks(hs he) 1Bk “
Qs = ks |1+ Bks coth kg(hs—h,) ( ) (14)

1+ Bkg coth kg(hs—
_ U,
Qm = k—tanh kp(hyy — hg) + — Sp 2 [1 — sechk,, (hy, — hy)]
m m
¢mo 1
+ (A — hs) — — tanh kyy (hy — hs) (15)
Spm km

- A - A
where @g, =+ psg 06, Pmo ="+ pngcosd, Ap=p,—pi; p=peatx=0,p=p, at
x = L and U, is given by

77 [uskscoth ks(hs_he)"'ﬁﬂsksz . _
O, [ e e 4 I A(S) tanh Ky (i ho)| =

T sech Ky (= i) +222 tanh ke (R, — )
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ks ] (16)

ks(hs—he)
2

ks

n Pso tanh
ks |1+ Bks coth kg(hs—hy)

Here, the acceleration due to gravitational force and the pressure gradient have similar effects.

Since it is not easy to find the exact inverse transform of Q, and Q,, given by (14) and (15),
therefore, the expressions can be approximated by using reasonable assumptions ( i.e. small thickness of
serous layer fluid and large mucus thickness ) i.e. ks(hs — h,) < 1 and k,,, (h,, — hg) > 1. In such case,
equations (14) and (15) are approximated as follows:

1

A ¢mo 1 (Gpm)i (hs—he) __pbPs (hs—he) _
Qs = 2us |s2(s+a) 2 ms  S(S+a) ﬁﬂ551/2(5+a)1/2]( ) (hs = he)(hs — he +25) +
bt GomZ (emho) oy | (emhe?(h-het2p)?
4us _S HUs 51/2(S+0£)1/2 'B s (hs hE):| (hs—he+p) (17)
Qm =

(G/ )%
1 1 Pmo Pm
. {Ta + Pmo(hm — hs)} 7 — hsrah
) 1
Pmo 1 _ (Gpm)2  (hs—he) __pPs (hs—he)
Hs [52(S+a) ps  s72(s+a)’2 ﬂus S(.S‘+a)]( )(h he + B) +
1

% 1 _ (Gpm)2 (hs—he) Psﬁ (hs—he) _
245 [s¥2(s+a) /2 us  SGS+a)  ps sV2(s+a)t /2]( ) (hs = he)(hs = he +25) (18)

Now, taking inverse Laplace transform of (17) and (18), the transport rates can be found as follows:

0, = ‘2’;: (%)% te, {10 G at) A G at)} - (’;—’:) (he — hy + B)(1 — e) | (hy — ho)(hg — hy + 2B)
1
f—z 1- (GZ’S”)Z (hy — hy + B)eol, (% at)

(hs - he)z(hs - he + 2.[)))2
(hs - he + .8)

- ﬁ%(hs — hy) (19)

O = {522 (hs = 1) s = o + 2) [(pi) tez {1 () + 1 (3} = (52 Chs o+ 21 - e1>]
t | (Umez)
. K +q.’>m01(h —h) + (HS)(h —h,+B) +2(G—p:)%(8+at)}
Pmo [Bum? 1
TS e

+ {#3 (hs = he + BY(Gpm)ites (Sar) + (F2 F)a- eo} ( o ) (hs = he + )
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B [{Uo + 252 (hg = ho)(hs = he + B} (= ) exlo(bat) + 22 (E) (b — h, + B)(1 -

el)] () (ks = ho) (20)

where e; = exp(—at), e, = exp(—%m&) and I,, I; are the modified Bessel functions of the first kind of
order zero and unity respectively [6].

4. Results and Discussion
To see the effects of distinct parameters on mucus transport rate quantitatively, the expression for Q,,

. . . . RmpUo X mids "
given by (20) by using the non-dimensional parameters: u* = f,ps* = :SU , s = hﬂ 2 S =
o 0 oUg

2 * *
u _hmp Uo *_h ¢ _h G *_h *_h _h T _ G _
- * - u(;bmo == m!G* - he e;hs = =t (Z* ﬁ* -

) - - ) - =—,T - ) - " )
Ho Pm Ho .uoUo Hou, hm hm a Hou,
U
hi t" = h—‘” and Q,," = —= (u, being the viscosity of serous fluid in contact with eplthellum) can
m m m

be written in non-dimensional form as follows:

1

* (5 *

* (P ) * * * G 2 * * 1 * gk 1 * 4k ‘u' * *
an = {f = n | () e o ) o o)) - () - e

S

t* * *e *
+—|ta" + Pmo { (1= ™) + (“m*)H; 4 (M"‘—Z)l(s rart)

Pmo” |Btm ™ (1 —€2")  (ttm™\ [ 2 (] Hn” ) e
- pmo* (7; 1 +(Mm >{H H{(G"pm )Zt e’y (2 )"‘(G_ni) (1—e )}Hl

Us™

* ¢so* * * * G * ¢mo Hm *
B [{1 + 2 (b~ he )Hl}(p—m*) er'lo (at") + Eme (B ) i (1 - ey )] (hs" = he*) (21)
where Hi and H, are respectively given by Hf = hg — h, + f and H; = hy — h, + 2p.

Various graphs are plotted in Figures (2)-(8), by taking following set of parameters which have been
calculated by using typical values of various characteristics related to human lung airways [3,5].
ps* =1—10, ps* = 1.0, ¢s," = 1.0, " = 100 — 1000, p,,,* = 0.2 — 0.5, " = 2 — 25,
G*=10-100, h," = 0.1,h," = 0.2 —0.6,* = 0.02 — 0.10,7,* = 1 — 10,t*
=0.10-0.16.
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Figure 2. Variation of Q,," with u,,,* for distinct values of 7,*
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*

Fig.2 shows the variation of Q,," with p,,* for distinct values of 7,* and fixed values of h," =
0.2,h," =0.1,8* =0.02, us* = 1,p,," = 0.2,6* =20, ¢yp” = 25,05,  =1.0p,* =1.0,,t* =1 x
1071, This figure demonstrates that the mucus transport rate decreases as its viscosity increases , but it
increases when the shear stress induced by air-flow at mucus-air interface increases. These observations
are in line with analytical results of [3,4].
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Figure 3. Variation of Q,," with u,,,* for distinct values of u*

Fig. 3 shows the variation of Q,,," with p,,,* for distinct values of u,* and fixed values of 7, = 9,h,” =
0.2,h," = 0.1, = 0.02,6* = 10, ¢, = 10,¢5," = 1.0, ps* = 1.0, p,,* = 0.2,t* =1 x 10~L.  This
figure illustrates that mucus transport rate decreases when the viscosity of the serous fluid or that of
mucus increases. These observations are in line with analytical results of [3].
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Figure 4. Variation of Q,,," with G* for distinct values of p,,,*

* *

Fig.4 shows the variation of @Q,," with G* for distinct values of p,,* and fixed values of 7,* =
5h* =02,h, =0.1,8 = 0.02,¢,,," = 20,¢5," = 1.0, ps* = 1.0, u* = 1,t* = 1 x 10~ L.This
figure illustrates that mucus transport rate decreases as the modulus of elasticity increases. The figure also
illustrates that mucus transport rate decreases as its density increases for constant elastic modulus. These
observations are in line with analytical results of [3,7].
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Figure 5. Variation of Q,," with u,,,* for distinct values of g*

Figure 5 shows the variation of Q,," with w,,* for distinct values of g* and fixed values of 7,* =
7,h* =0.2,h, =0.1,6* =10, ¢, = 15,¢s," = 1.0, ps* = 1.0, pp,* = 0.2, 4s* = 5,t* =1 x 1071,
From this figure, it is clear that mucus transport rate decreases as the mucus viscosity increases, but
increase in porosity parameter results an increase in mucus transport rate. These observations are in line
with analytical results of [5,7].
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Figure 6. Variation of Q,,," with p,,,* for distinct values of ¢, "
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Fig.6 shows the variation of Q,," with p,,* for distinct values of ¢,,,” and fixed values of 7,* =
5hs" =0.2,h," =018 =0.02,u" =10,¢s," = 1.0, pp* = 0.2,ps* = 1.0,t* =1 x 10~1.  This
figure shows that mucus transport rate decreases when its viscosity increases. It can also seen from this
figure that an increase in pressure gradient enhances the mucus transport rate. These observations are in
line with analytical results of [3].
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Figure 7. Variation of Q,,," with u,,* for distinct values of h"

Fig.7 shows the variation of Q,,," with y,,* for distinct values of h," and fixed values of t,* = 5,h,” =
0.1,8" = 0.02, 45" = 1.0, o = 20, Pso* = 1.0, py* = 0.2,p* = 1.0,6* = 20,t* = 1x 10", This
figure shows that mucus transport rate decreases when mucus viscosity or thickness of serous layer fluid
increases, but increase in viscosity of mucus for its at higher values does not have any significant effect
on its transport rate, which is an indication that the mucus behaves as an elastic slab at the higher values
of its viscosity . These observations are in line with analytical results of [5,8].
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Figure 8. Variation of Q,,," with t* for distinct values of h"
Fig.8 shows the variation of Q,," with t* for distinct values of h¢" and fixed values of 7,* = 5,h," =
0.1,8* = 0.02, " = 100, u* = 1.0, P = 20, 5," = 1.0, pp,* = 0.2,ps* = 1.0,G* = 20. This
figure shows that mucus transport rate decreases with increase in transport duration. Here, it is also seen

that the mucus transport rate decreases with an increase in thickness of serous layer fluid. These
observations are in line with analytical results of [4,5,8].
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5. Conclusion

This paper describes a two-layer unsteady state planar model to estimate mucus transport in the lung
airways by addressing mucus as a visco-elastic fluid. It has been observed that the mucus transport rate
increases as the shear stress induced by air-motion, the pressure gradient and porosity parameter increase.
It also includes that mucus transport rate decreases as its elastic modulus or density increases. Also, it
includes that mucus transport rate decreases when viscosity of mucus or serous layer fluid and thickness
of serous fluid increase. It is also seen that the mucus transport rate decreases with increase in its transport
duration.
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