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Abstract

Regarding Flat FRW space-time, an investigation is conducted
on a creation field cosmological model with a time dependent New-
ton’s constant G. We have investigated the possibility that there is
a barotropic perfect fluid distribution throughout the universe. We
made the assumption that G = αḢ + βH2, where H is the Hubble
parameter, in order to arrive at the deterministic model. We discover
that because new matter is continuously being created, the density
of the matter stays constant even though the creation field changes
over time. In the absence of a particle horizon, G is found to vary as
1
t2
. According to Riess et al.[30] and Perlmutter et al.[31], the model’s

representation of a universe that is expanding quickly is consistent
with observations.
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1 Introduction

The conventional understanding of gravity as a fundamental force that is
constant in strength throughout space and time is called into question by the
theory of a changing gravitational constant. A stable gravitational constant
(G) is necessary for both Albert Einstein’s general theory of relativity and
Isaac Newton’s law of universal gravitation. According to other theories of
gravity, G might vary based on circumstances or space-time regions. These
alternative theories emerge either as extensions of general relativity to explain
phenomena like the universe’s fast expansion, or as attempts to reconcile
discrepancies in cosmological data without resorting to dark matter or dark
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energy. For instance, fundamental constants like G could have changed across
cosmic timescales according to changing speed of light (VSL) hypotheses.

Extra scalar fields in scalar-tensor theories affect the strength and, thus,
the value of gravity.It is important to stress that, despite their interesting
nature, these alternative theories remain theoretical and have not gained
widespread acceptance among the scientific community. Based on exper-
imental evidence, it is highly suggested that G stays constant within the
current measurement accuracy.

The gravitational constant G appears in physics literature for the first
time in Newton’s law of gravitation.

F = Gm1m2

a2

There are two masses m1 and m2 that are separated by distance a , under
the influence of the forces of attraction F .

There is confidence that the above law is correct, at least as a first ap-
proximation, because Newtonian gravity can explain gravitational events in
our local area (the Earth and the Solar System).

For this reason, when he wrote down his gravity field equations in order
to find the constant K, Einstein’s law had to decrease to F = Gm1m2

a2
in the

weak-field approximation, or Rik − R
2
gik = −KTik. The answer, which was

determined by applying Newtonian mechanics, as K = 8πG
c4

,where c is the
speed of light.

Regardless of whether it is named after Einstein or Newton, gravity is a
long-range force that is essential to cosmology and the universe’s large-scale
structure. Nevertheless, cosmic considerations pose deeper questions. The
physical principles governing the construction of the cosmos are also included
because, by definition, everything exists in the universe. In other words,
rather than existing independently of the cosmos, laws are a fundamental
component of it. So how much is the cosmos determining the law of gravity
itself? transforms the law alter in form if the universe transforms as well?
Evidently, if we are obliged to deal with a law of gravitation that varies with
time and space as a result of the aforementioned concerns, the cosmological
problem becomes considerably more challenging.

Gravitation is significant on a large scale because of the limited range
of the strong and weak forces as well as the fact that electromagnetic force
lessens due to the general neutrality of matter, as mentioned by Dicke and
Peebles in their [1]. Dicke [2] highlighted that using Earth as a source of
evidence for or against the existence of temporal fluctuation of the gravi-
tational constant would be difficult. Dirac [3] mentioned a theory with a
variable gravitational constant based on the assumption that high numbers
occur often. Researchers Pochoda and Schwarzschild, Ezer and Cameron,
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and Gamow studied how the sun altered over time when a variable gravita-
tional constant was present.

The solar development was examined by Pochoda and Schwarzschild [4],
Ezer and Cameron [5], and Gamow [6] in the presence of a time-varying
gravitational constant. If the Dirac theory had been correct, they concluded,
the Sun would have burned off its initial nuclear fuel by now. This is the
outcome of the Poisson equation, which states that an increase in the grav-
itational constant is equal to an increase in the density of stars. Demarque
and colleagues [7] examined an ansatz where G ∝ t−n and demonstrated

that |n| < 0.1 is equivalent to | Ġ
G
| < 2 × 10−11yr−1. Gaztanaga et al. [8]

considered the effect of a variation of the gravitational constant on the cool-
ing of white dwarfs and on their luminosity function and concludes that
| Ġ
G
| < 3×10−11yr−1.Barrow [9] assumed that G ∝ t−n and obtained from he-

lium abundances for −5.9×10−3 < n < 7×10−3, | Ġ
G
| < (2±9.3)h×10−12yr−1

by assuming a flat universe.
In order to extend Einstein’s general theory of relativity by incorporating
variable G and meeting the conservation equation, alternative theories of
gravity that are mathematically well posed were subsequently created. Many
proposals have been made for the potential extension of general relativity
with time-dependent G in an effort to unify gravitation and elementary par-
ticle physics or to include Mach’s principle into the theory [10]–[13].

All studies pertaining to the physical events in the early cosmos employ
a universe model, sometimes referred to as the “big-bang model.” Nonethe-
less, it is well known that the big-bang paradigm has shortcomings in the
following areas: (i) There is a singularity in the model’s history and perhaps
a future one. Both physical incompleteness and mathematical inconsistency
are shown by the singularity. (ii) The big-bang concept defies the law of
conservation of energy. In contrast, the energy density in the big-bang sce-
nario is positive-definite, as the left-hand side of Einstein’s field equation has
zero divergence. Therefore, matter cannot exist without going against the
principle of energy conservation. (iii) In the early epochs of the cosmos, the
big-bang theories based on plausible equations of state result in an extremely
narrow particle horizon. The universe’s “horizon problem” is a result of this
reality. (iv) There isn’t a single coherent scenario that fits the framework of
the big bang model to explain the genesis, development, and characteristics
of small-scale structures in the universe. (v)Problem of flatness.
The horizon and flatness issues that plagued the big-bang model have been
resolved by the C-field, a negative energy field. In the usual big-bang sce-
nario, inflation has provided a solution to these issues. Using inflationary
theory within the framework of the big bang, the difficulties of the universe’s
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flatness and isotropy have been resolved (Guth [14]). Numerous authors, in-
cluding Linde [15], Grön [16], Barrow [17], Rothman and Ellis [18], Madsen
and Coles [19], Linde [20], Bali and Jain [21], Chervon [22], Reddy and Naidu
[23], have discussed how inflation has also provided a basis for understanding
the origin of large structures resulting from quantum fluctuations during the
inflationary period.
A certain amount of freedom that functions as a negative energy mode is re-
quired if a model is able to explain the production of positive-energy matter
without going against energy conservation. Such a ”negative energy mode“
originating from the scale degree of freedom of gravity is employed by all
quantum gravitational models that explain creation consistently [14]. Thus,
the natural process of matter production is enabled by a negative-energy
field.We are aware that when positive of energy density is not assured, the
classical singularity theorems stop working. To explain the formation of
matter, Hoyle and Narliker [24] used a field theoretic method that included
a massless and chargeless scalar field. The C-field theory does not contain a
big-bang type singularity, unlike Bondi and Gold’s steady-state theory [25].
Narlikar [26] has highlighted that the production of matter occurs at the cost
of the negative energy C-field. Einstein’s field equations have been solved by
Narlikar and Padmanabhan [27], which allows radiation and a massless scalar
creation field with negative energy as a source. It has been demonstrated that
a cosmological model grounded on this solution meets all empirical require-
ments, serves as a strong substitute for the conventional big-bang model,
is devoid of singularity and particle horizon, and offers a rationale for the
flatness issue. According to several writers, including Caldwell [28], Gibbons
[29], Singh et al. [30], Giocomini and Lara [31], and Paul and Paul [32],
the phantom field is also the resuscitation of the C-field. In their paper [33],
Vishwakarma and Narlikar address modelling repulsive gravity with creation.
In FRW space-time with a variable gravitational constant, Bali and Tikekar
[34], Bali and Kumawat [35],and many other authors [38]-[41] have recently
studied C-field cosmological models .
Inspired by the aforementioned, we have examined C-field cosmological mod-
els within the framework of flat FRW space-time for barotropic perfect fluid
distributions with variable G. We have assumed G = αḢ + βH2 to obtain
the deterministic solution, where H is the Hubble parameter and over dot
indicates derivative with regard to time. Additionally, we have spoken about
a cosmological model for certain values of constants in terms of cosmic time.
There is also discussion of the physical factors associated with the astronom-
ical observations.
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2 Metric and Basic Field Equations

Robertson-Walker characterizes cosmological space-time as homogeneous and
isotropic in the type

ds2 = dt2 −R2(t)[
dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2] (1)

Where k = 0, 1,−1curvature index.
By adding the C-field, Hoyle and Narlikar [11] alter Einstein’s field equa-

tions as

Rj
i −

R

2
gji = −8πG[Tm

j
i + Tc

j
i ] + Λgji (2)

The perfect fluid energy momentum tensor (Tm
j
i ) and creation field tensor

(Tc
j
i ) are defined as

Tm
j
i = (ρ+ p)viv

j − pgji (3)

Tc
j
i = −f(CiC

j − 1

2
gjiC

αCα) (4)

where matter and the creation field are coupled with a coupling constant
f > 0 and Ci =

dC
dxi . The modified Einstein field equation for FRW metric

with Λ = 0 gives
3Ṙ2

R2
+

3k

R2
= 8πG[ρ− 1

2
fĊ2] (5)

2R̈

R
+

Ṙ2

R2
+

k

R2
= 8πG[

1

2
fĊ2 − p] (6)

3 Solution of The Field Equations

vanishing divergence of Einstein Tensor leads to energy conservation equation
with Λ = 0.

[8πGT j
i ];j = 0

This takes

8πĠ[ρ− 1

2
fĊ2] + 8πG[ρ̇− fĊC̈ + 3ρ

Ṙ

R
− 3fĊ2 Ṙ

R
+ 3p

Ṙ

R
] = 0 (7)

Where Hoyle and Narlikar’s consideration of the isotropic pressure p = ωρ
and the gravitational constant G as a function of time are taken into account.
Furthermore, Ci

;j = 0 in the source field equation This demonstrates that

Ċ = 1 with the condition Ċ = 1 above equations (5) and (6), as well as that
C = t for large values of r.

56



3Ṙ2

R2
+

3k

R2
= 8πG[ρ− 1

2
f ] (8)

2R̈

R
+

Ṙ2

R2
+

k

R2
= 4πGf − 8πGωρ (9)

These two equation together give

2R̈

R
+ (1 + 3ω)

Ṙ2

R2
= (1− ω)4πGf − (1 + 3ω)k

R2
(10)

To obtain a deterministic solution, we assume

G = 2α
R̈

R
+ β

Ṙ2

R2
(11)

Where α and β are constants and R is the scale factor.
Equation (10) can be written as

2R̈

R
+ (1 + 3ω)

Ṙ2

R2
= (1− ω)4πf(2α

R̈

R
+ β

Ṙ2

R2
)− (1 + 3ω)k

R2
(12)

2[4(1− ω)πfα− 1]
R̈

R
+ [(1− ω)4πfβ − (1 + 3ω)]

Ṙ2

R2
=

(1 + 3ω)k

R2
(13)

Which can be written as

2
R̈

R
+

[(1− ω)4πfβ − (1 + 3ω)]

[4(1− ω)πfα− 1]

Ṙ2

R2
=

(1 + 3ω)k

[4(1− ω)πfα− 1]

1

R2
(14)

Where 4(1 − ω)πfα − 1 ̸= 0 and let ϵ = [(1−ω)4πfβ]−(1+3ω)
[4(1−ω)πfα−1]

and δ =
(1+3ω)k

[4(1−ω)πfα−1]
Now above equation take the following form

2R̈ + ϵ
Ṙ2

R
= δ

1

R
(15)

Ṙ2Rϵ = δ
1

ϵ
Rϵ +M (16)

Where M is constant of integration.For deterministic solution, we considered
M = 0.

This gives

Ṙ2 =
δ

ϵ
(17)
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On integration this gives

R =

√
δ

ϵ
t+ c (18)

Where c is constant of integration . for deterministic we take c = 0 then
above equation take the form

R =

√
δ

ϵ
t (19)

Now Newton’s constant G becomes

G =
β

t2
(20)

Energy density can be given as

ρ =
3(δ + ϵk)

8πβδ
+

f

2
(21)

The isotropic pressure becomes

p = ωρ = ω[
3(δ + ϵk)

8πβδ
+

f

2
] (22)

By putting barotropic equation of state p = ωρ in equation (7)

8πĠ[ρ− 1

2
fĊ2] + 8πG[ρ̇− fĊC̈ + 3ρ

Ṙ

R
− 3fĊ2 Ṙ

R
+ 3ωρ

Ṙ

R
] = 0 (23)

Equation (23) after using (19),(20),(21) becomes

dĊ2

dt
+ (

Ġ

G
+ 6H)Ċ2 =

2ρ

f
[
Ġ

G
+ 3H(1 + ω)] (24)

Integrating above we get

Ċ2t4 = [
(1 + 3ω)

2πf(β − α)
+ (1 + 3ω)]

∫
t3dt+M (25)

For deterministic solution we considered integration constant M = 0

Ċ2t4 = [
(1 + 3ω)

2πf(β − α)
+ (1 + 3ω)]

t4

4
(26)

Ċ2 =
(1 + 3ω)

8πf(β − α)
+

(1 + 3ω)

4
(27)
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In order to get deterministic solution we take 1
2πf

= ω
1+ω

(α − β) Which
take the form

Ċ2 = 1 (28)

On integration this gives
C = t (29)

This shows that creation field increases with cosmic time.
Now the metric take the form

ds2 = dt2 − (

√
δ

ϵ
t)2[

dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2] (30)

Since ϵ = [(1−ω)4πfβ−(1+3ω)]
[4(1−ω)πfα−1]

and δ = (1+3ω)k
[4(1−ω)πfα−1]

.

Hence δ
ϵ
= [(1+3ω)k]

[(1−ω)4πfβ−(1+3ω)]

Now above equation take the following form

ds2 = dt2 −
[

[(1 + 3ω)k]

[(1− ω)4πfβ − (1 + 3ω)]

]
t2[

dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2]

(31)

4 Physical and Geometrical behaviour of the

model

Now the metric take the form

ds2 = dt2 − (

√
δ

ϵ
t)2[

dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2] (32)

Since ϵ = [(1−ω)4πfβ−(1+3ω)]
[4(1−ω)πfα−1]

and δ = (1+3ω)k
[4(1−ω)πfα−1]

.

Hence δ
ϵ
= [(1+3ω)k]

[(1−ω)4πfβ−(1+3ω)]

Now above equation take the following form

ds2 = dt2 −
[

[(1 + 3ω)k]

[(1− ω)4πfβ − (1 + 3ω)]

]
t2[

dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2]

(33)
Cosmic Scale Factor
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R =
√

δ
ϵ
t

Newton’s Constant G

G = β
t2

Energy Density

ρ =
3(δ + ϵk)

8πβδ
+ f

2

The Isotropic Pressure

p = ωρ = ω[3(δ+ϵk)
8πβδ

+ f
2
]

Hubble Parameter

H = Ṙ
R
= 1

t

Decceleration Parameter

q = −1− HḢ
H2 = −1 + 1

t

5 Conclusions

For the model (30), the matter density (ρ)is constant with time.In cosmol-
ogy, the cosmic energy density refers to the total amount of energy contained
within a given volume of the universe. It’s a crucial concept in understanding
the dynamics and evolution of the universe.In the early universe, when den-
sities and temperatures were extremely high, various forms of energy, such as
radiation and relativistic particles, exerted isotropic pressure. This pressure
was an essential component in determining the evolution of the universe,
including processes like cosmic inflation and the formation of the cosmic mi-
crowave background radiation. The scale factor (R) increases with time.As
the universe evolves over time, the scale factor changes. When the scale fac-
tor increases, distances between galaxies and other objects in the universe
increase as well, indicating the expansion of the universe. Conversely, if the
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scale factor decreases, distances between objects decrease, indicating a con-
tracting universe.Newton’s constant is a fundamental constant of nature, and
its value determines the strength of the gravitational force between objects.As
it is function of cosmic time and | Ġ

G
| = 2H.G → ∞ when t → 0 and G → 0

when t → ∞.The deceleration parameter, often denoted as q, is a dimension-
less quantity used in cosmology to describe the rate at which the expansion
of the universe is slowing down or speeding up. It characterizes the accelera-
tion or deceleration of the universe’s expansion. The deceleration parameter
q ̸= 0 indicates that the model (30) represents accelerating universe. Thus,
an inflationary scenario exists in the model (30).The Hubble parameter, de-
noted as H(t) or H(z), depending on whether it’s expressed as a function
of time or redshift, is a measure of the rate of expansion of the universe.
It quantifies how quickly objects in the universe are moving away from each
other as a result of the expansion of space.The value of the Hubble parameter
is not constant over cosmic time but changes as the universe evolves. Obser-
vationally, it’s often expressed in terms of the Hubble constant, denoted as
H0, which represents its present-day value. The Hubble constant is typically
measured in units of kilometers per second per megaparsec (km/s/Mpc).The
Hubble parameter and its variations provide essential information about the
age, size, and expansion history of the universe. The creation field (C) in-
creases with time and Ċ = 1 which agrees with the value taken in source
equation. When t = 0 then ρ = constant. This result may be interpreted as:
Referring to Narlikar [36], Hawking and Ellis[37], the matter is supposed to
move along the geodesic normal to the surface t = constant. As the matter
moves further apart, it is assumed that more matter is continuously created
to maintain the matter density at constant value.
The coordinate distance to the horizon rH(t) is the maximum distance a null
ray could have travelled at time t starting from the infinite past i.e.

rH(t) =
∫ t

∞
1

R(t)
dt

We could extend the proper time t to (−∞) in the past because of the non-
singular nature of the space-time. Now

rH(t) =
∫ t

0
1√

[ [(1+3ω)k]
[(1−ω)4πfβ−(1+3ω)] ]t

dt

This integral diverges at lower limit, showing that the models (30) is free
from horizon.
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