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Abstract 

In this paper, a two-layer quasi-steady cylindrical model of mucus transport in a constricted airway under a time-

varying pressure gradient due to cough is studied. Mucus is treated as an incompressible Newtonian fluid in this 

model. The impact of slip condition due to immotile cilia, which forms a porous matrix, is also incorporated into the 

model. The study notes that as the constriction thickness and serous viscosity increase, the mucus and serous flow rate 

decrease. Additionally, it is observed that the flow rate of mucus and serous increases as the slip parameter and 

pressure drop increase. It is also found that the mucus flow rate increases as the mucus thickness increase. The study 

also reveals that the mucus flow rates decrease as the mucus viscosity increases. 
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1. Introduction 

One of the most crucial primary defence systems of the human lung airways is the muco-ciliary system, which 

facilitates the removal of entrapped particles from the lungs through mucus transport, including bacteria, viruses, 

cellular debris, and carcinogens in tobacco smoke. It is composed of three layers: the mucus layer, the serous layer, 

and the cilia, which are tiny projections that resemble hairs and line the bronchial respiratory tracts' epithelium. While 

mucus is a visco-elastic fluid, the fluid in the serous layer is thought to be Newtonian in nature. It has been noted that 

the structure of cilia, the roles that their tips play in the serous sub-layer fluid, and the thicknesses and viscosities of 

both the serous fluid and mucus are all factors that affect mucus transport in general. 

Numerous researchers have examined the mucus transport in the human lungs in recent decades. Barton and 

Raynor [3] in particular provided an analytical model for the transfer of mucus by viewing the cilium as an oscillating 

cylinder that is higher during the effective stroke and lower during the recovery stroke. Blake [4] examined a two-

layer Newtonian fluid model in which the fluid in the serous layer was replaced by mucus. He emphasized the impact 

of air flow and gravity on the movement of mucus. Blake and Winet [5] provide another mathematical study of the 

two-layer fluid model. They proposed that the mucus transport rate would be greatly increased if cilia could only 

pierce the upper, considerably more viscous layer.  Even though Schroter and Sudlow [21] and Pedley et al. [13] have 

studied the air flow resistance in bronchial airways, many others, including Puchelle et al. [14], Zahm et al. [30], King 

et al. [9,10,11] in their experimental studies, have emphasized the role of mucus interaction with mucus in bronchial 

clearance. Experiments on coughing related to Scherer and Burtz [20] demonstrated the significance of fluid viscosity.  

Agarwal et al. [1] have studied the mucus transport by airflow interaction in a miniaturized simulated cough machine 

and found that mucus transport increases as the viscosity of the serous layer simulant decreases or as the mucus filance 

(spinnability) decreases. King et al. [10] also studied the interaction of airflow with the mucus gels in a simulated 

cough machine under steady state and oscillatory airflow conditions and emphasized the significance of mucus gel 

viscosity on transport. Given that mucus is a visco-elastic fluid, King et al. [11] presented a planar two-layer fluid 

model for muco-ciliary transport in the respiratory tract caused by cilia beating and air motion. They demonstrated 

that mucus transport increases with shear stress brought on by air motion, pressure drop, and mean velocity of cilia 

tips. It has been demonstrated that the mucus transport rate reaches its peak at a specific serous fluid thickness value, 

given a set total depth of both mucus and serous layer fluid.  
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By taking into account the cilia bed as a porous matrix, Agarwal and Verma [2] presented a two-layer steady 

state mathematical model to investigate the mucus transport in the respiratory tract caused by airflow. Through the 

prescription of shear stress at the mucus-air interface, the effect of air motion is included in their work. Mucus 

transport is demonstrated to increase with pressure drop, porosity parameter increases, and shear stress brought on by 

air motion. Additionally, mucus transport has been shown to diminish with increasing serous layer or mucus viscosity; 

nevertheless, mucus transfer remains unaffected at higher mucus viscosity values. In order to study mucus transport in 

human lung airways, Rana et al. [16] have developed a two-layer circular steady-state mathematical model that takes 

into account the impacts of mucus viscoelasticity, cilia beating, and porosity parameter. Mucus transport in a 

diseased airway has been studied by Kumar et al. [12], who took into account the impact of constriction on the 

airways. It has been demonstrated that when airway diameter increases, mucus transport rate decreases. By taking into 

account the effect of slip parameter, Chitra and Shabana [6] have proposed a two-layer model for the air-mucus 

interface in the constricted human airways under a time-varying pressure gradient. They have demonstrated that when 

the slip parameter increases, the mucus transport rate increases as well.  

In this paper, we aim to analyse a two-layer cylindrical co-axial flow model of mucus and serous in diseased 

airways under the influence of time varying pressure gradient. The constriction attaches to the wall penetrating into 

serous layer is sinusoidal. The effect of a slip parameter due to the immotile cilia bed, which forms a porous bed 

within which the serous fluid flows following Darcy's law is considered in the model. We use the following 

assumptions, as utilized in past study by other investigators: 

1. The fluid flow in the cylindrical tube is symmetrical about its central axis. 

2. The pressure gradient caused by coughing in the fluid layers varies over time.  

3. Mucus behaves as an incompressible Newtonian fluid due to the large shear rates seen when coughing [Zahm 

et al. [30]].  

4. During coughing, mucus and serous flow are assumed to be laminar and quasi-steady.  

5. In larger airways, there may exist a slip parameter at the interface of the mucus layer and immotile cilia bed 

that is saturated with periciliary fluid and creates a porous matrix in accordance with Darcy's law. 

 

2. Mathematical Model 

Naturally, the airways of the human lungs appear to be cylindrical in shape. Thus, the circular tube geometry 

idealizes the physical conditions of movement in the lung airways. The central lumen is thought to be filled with air 

and encircled by a highly viscous mucus fluid, which is covered by a watery periciliary layer that has a viscosity 

significantly lower than that of the mucus (Fig. 1). The inner surface wall is ciliated. Presumably, some cilia are 

immotile and form a porous matrix bed in the periciliary layer where they come into touch with the epithelium. The 

impact of a slip parameter caused by immotile cilia in the periciliary layer, which create a porous matrix when in 

contact with the epithelium, is also taken into consideration by the model. Smooth muscles attached to the wall can 

cause the serous layer to contract and tighten in pathological conditions.  

 

Figure 1: Circular tube geometry for mucus transport in constricted airways. 
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The radius of the circular tube varies based on the constriction geometry and can be described as follows 

[Young (1968), Shukla (1979)]: 

𝑅𝑠(𝑧)

𝑅
= {

1 −
𝛿

2𝑅
*1 + 𝑐𝑜𝑠

2𝜋

𝐿0
(𝑧 − 𝐿1 −

𝐿0

2
)+,    𝐿1 ≤ 𝑧 ≤ 𝐿1 + 𝐿0

1,                                   0 ≤ 𝑧 ≤ 𝐿1 𝑎𝑛𝑑  𝐿1 + 𝐿0 ≤ 𝑧 ≤ 𝐿
                                                                     (1) 

where 𝑅 is the radius of circular tube, 𝑅𝑠(𝑧) is the radius of circular tube in constricted area, 𝛿 (<< 𝑅𝑠(𝑧)) is the 

thickness of constriction which is sinusoidal. 

Let, 𝑎 = 𝑅 −
δ

2
  and  𝑏 =

δ

2
  then equation (1) becomes: 

 𝑅𝑠(𝑧) = 𝑎 − 𝑏𝑐𝑜𝑠
2𝜋

𝐿0
(𝑧 − 𝐿1 −

𝐿0

2
) 

The equation governing the mucus and serous flow under quasi-steady state in a circular tube can be written 

as follows: 

Region I: Mucus Region (Ra ≤ r ≤ R𝑚) 

∂𝑝

∂𝑧
=

1

𝑟

∂

∂𝑟
(𝑟τ𝑚)                                                                                                                                                (2)                                                                 

τ𝑚 = μ𝑚
∂𝑢𝑚

∂𝑟
                                                                                                                                                    (3) 

Region II: Serous Region (R𝑚 ≤ r ≤ Rs(z)) 

∂𝑝

∂𝑧
=

1

𝑟

∂

∂𝑟
(𝑟τ𝑠)                                                                                                                                                 (4) 

τ𝑠 = μ𝑠
∂𝑢𝑠

∂𝑟
                                                                                                                                                       (5)                          

where 𝑧  is the axial coordinate along the tube axis which is in the flow direction and r is the radial coordinate in the 

radial direction which is perpendicular to the fluid flow, R𝑎 is the thickness up to air-mucus interface, R𝑚 is the 

thickness up to mucus-serous interface,  𝑝 is the mean pressure that is constant across the two layers, 𝜏𝑚 and 𝜏𝑠 are the 

mean shear stress across mucus and serous region,  𝑢𝑚 and  𝑢𝑠 are the mean velocity components of the mucus and 

serous in the direction of  𝑧 and 𝜇𝑚, 𝜇𝑠 are the viscosities of mucus and serous respectively. 

The formation of porous bed by immotile cilia during mild coughing or forced expiration causes slipperiness 

at the boundary 𝑟 = 𝑅𝑠(𝑧). Therefore, 

Boundary Conditions: 

𝑢𝑠 = −𝛽𝜏𝑠,    𝑟 = 𝑅𝑠(𝑧)                                                                                                                                  (6) 

Matching Conditions: 

𝑢𝑚 = 𝑢𝑠,        𝑟 = 𝑅𝑚                                                                                                                                             (7) 

𝜏𝑚 = 𝜏𝑠,         𝑟 = 𝑅𝑚                                                                                                                                       (8) 

The negative sign in equation (6) is considered due to the negative value of 𝜏𝑠 in the serous layer. It is 

important to emphasize that 𝛽 is the slip parameter at the boundary between mucus and immotile cilia, which are 

saturated with the periciliary layer and form a porous matrix in the airways. Equations (7) and (8) ensure that velocity 

and stress components are continuous at the mucus-serous interface [Singh (2021)]. 

The pressure gradient generated during coughing in lung airways changes with time. Therefore, we may 

assume that 

−
𝜕𝑝

𝜕𝑧
= 𝑃 = 𝑃0𝑓(𝑡)                                                                                                                                        (9) 
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where 𝑡 is time, 𝑃0 is constant and influenced by intensity of cough. The higher intensity of cough leads to 

proportional increase in flow rates as the flow duration progresses. The function 𝑓(𝑡) in equation (9) is taken from the 

paper of Satpathi et al. [1973] which is defined as follows: 

  𝑓(𝑡) = {
27 𝑡(𝑇−𝑡)2

4𝑇3      , 0 ≤ 𝑡 ≤ 𝑇

   0                 , 𝑡 > 𝑇
                                                                                                             (10) 

For the sake of simplicity, we may also assume that the cough duration T ranges from 0.001 sec to 0.03 sec. 

The graphical representation of equation (10) is shown in Figure 2. 

 

Figure 2: Graphical Representation of 𝒇(𝒕) with 𝒕 for various values of T 

 

3. Analytical Solution 

 

Solving equations (2)-(5) by using boundary and matching conditions (6)-(8), the stress and velocity 

components in mucus and serous layers are computed which are given below: 

 𝜏𝑚 = 𝜏𝑠 = −
𝑃𝑟

2
                                                                                                                                                           (11) 

𝑢𝑚 =
𝑃

4𝜇𝑚
(𝑅𝑚

2 − 𝑟2) +
𝑃

4𝜇𝑠
(𝑅𝑠

2(𝑧) − 𝑅𝑚
2 ) +

𝛽𝑃𝑅𝑠(𝑧)

2
                                                                                    (12) 

 𝑢𝑠 =
𝑃

4𝜇𝑠
(𝑅𝑠

2(𝑧) − 𝑟2) +
𝛽𝑃𝑅𝑠(𝑧)

2
                                                                                                                  (13) 

The volumetric flow rates in the two layers (mucus and serous) can be defined as follows: 

 𝑄𝑚 = ∫ 2𝜋𝑟
𝑅𝑚

𝑅𝑎
𝑢𝑚𝑑𝑟                                                                                                                                    (14) 

 𝑄𝑠 = ∫ 2𝜋𝑟
𝑅𝑠(𝑧)

𝑅𝑚
𝑢𝑠𝑑𝑟                                                                                                                                   (15) 

Substituting the values of 𝑢𝑚 from (12) and 𝑢𝑠 from (13) in equation (14) and (15) respectively, we get 

𝑄𝑚

2𝜋
=

𝑃

16𝜇𝑚
(𝑅𝑚

2 − 𝑅𝑎
2)

2
+

𝑃

8𝜇𝑠
(𝑅𝑠

2(𝑧) − 𝑅𝑚
2 )(𝑅𝑚

2 − 𝑅𝑎
2) +

𝑃𝛽𝑅𝑠(𝑧)

4
(𝑅𝑚

2 − 𝑅𝑎
2)                                      (16) 

𝑄𝑠

2𝜋
=

𝑃

16𝜇𝑠
(𝑅𝑠

2(𝑧) − 𝑅𝑚
2)

2
+

𝑃𝛽𝑅𝑠(𝑧)

4
(𝑅𝑠

2(𝑧) − 𝑅𝑚
2 )                                                                                     (17) 
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To calculate the pressure drop in each layer, we understand from the equation of continuity that both 𝑄𝑚 and 

𝑄𝑠 are constants. Therefore, from equation (16) and (17), we get 

−
𝜕𝑝

𝜕𝑧
=

𝑄𝑚

2𝜋𝐾2(𝑅𝑠
2(𝑧)+𝐾1𝑅𝑠(𝑧)−𝐾3)

                                                                                                                         (18)   

−
𝜕𝑝

𝜕𝑧
=

𝑄𝑠

2𝜋𝐾4(𝑅𝑠
2(𝑧)−𝑅𝑚

2 )(𝑅𝑠
2(𝑧)+2𝐾1𝑅𝑠(𝑧)−𝑅𝑚

2 )
                                                                                                      (19) 

where 𝐾1 = 2𝛽𝜇𝑠 ,  𝐾2 =
𝑅𝑚

2 −𝑅𝑎
2

8𝜇𝑠
 , 𝐾3 = 𝑅𝑚

2 (1 −
𝜇𝑠

2𝜇𝑚
) + 𝑅𝑎

2  and 𝐾4 =
1

16𝜇𝑠
. 

Replacing 𝑅𝑠
 (𝑧) by R for non-constricted regions, the pressure gradient for non-constricted regions 0 ≤ 𝑧 ≤

𝐿1 and  𝐿1 + 𝐿0 ≤ 𝑧 ≤ 𝐿 becomes  

−
𝜕𝑝

𝜕𝑧
=

𝑄𝑚

2𝜋𝐾2(𝑅2+𝐾1𝑅−𝐾3)
                                                                                                                                (20)   

−
𝜕𝑝

𝜕𝑧
=

𝑄𝑠

2𝜋𝐾4(𝑅2−𝑅𝑚
2 )(𝑅2+2𝐾1𝑅−𝑅𝑚

2 )
                                                                                                                 (21) 

The pressure is present only at two ends of the tube i.e. 𝑝 = 𝑝0 at 𝑧 = 0, 𝑝 = 𝑝𝐿 at 𝑧 = 𝐿. Then, we define the 

pressure drop as ∆𝑃 = 𝑝0 − 𝑝𝐿 . 

Now, integrating equations (18) and (20), we get 

  𝛥𝑃 = − ∫ 𝑑𝑝
𝐿

0
= ∫ *

𝑄𝑚 

2𝜋𝐾2(𝑅2+𝐾1𝑅−𝐾3)
+ 𝑑𝑧 + ∫ [

𝑄𝑚

2𝜋𝐾2(𝑅𝑠
2(𝑧)+𝐾1𝑅𝑠(𝑧)−𝐾3)

] 𝑑𝑧
𝐿1+𝐿0

𝐿1

𝐿1

0
                                                                                                

                             + ∫ *
𝑄𝑚

2𝜋𝐾2(𝑅2+𝐾1𝑅−𝐾3)
+ 𝑑𝑧

𝐿

𝐿1+𝐿0
   

Putting the value of 𝑅𝑠
 (𝑧) from (1) in above equation, we get 

 𝛥𝑃 =
𝑄𝑚

2𝜋𝐾2
{

(𝐿−𝐿0)

(𝑅2+𝐾1𝑅−𝐾3)
+

𝐿0

(𝑛−𝑚)
[

1

((𝑎+𝑚)2−𝑏2)
(
1
2
)
 − 

1

((𝑎+𝑛)2−𝑏2)
(
1
2
)
]}                                                         (22)  

where, 𝑚 =
𝐾1

2
 +

√𝐾1
2+4𝐾3

2
  and  𝑛 =

𝐾1

2
 −  

√𝐾1
2+4𝐾3

2
 

The volumetric flow rate of mucus i.e.; 𝑄𝑚 can be found as follows: 

𝑄𝑚 =
2𝜋𝐾2∆𝑃

(𝐿−𝐿0)

(𝑅2+𝐾1𝑅−𝐾3)
+

𝐿0
(𝑛−𝑚)

[
1

((𝑎+𝑚)2−𝑏2)

1
2

  −  
1

((𝑎+𝑛)2−𝑏2)

1
2

]

                                                                                       (23) 

Similarly, integrating equation (19) and (21), we get 

 𝛥𝑃 = −∫ 𝑑𝑝
𝐿

0
= ∫

𝑄𝑠 𝑑𝑧

2𝜋𝐾4(𝑅2−𝑅𝑚
2 )(𝑅2+2𝐾1𝑅−𝑅𝑚

2 )

𝐿1

0
+ ∫

𝑄𝑠 𝑑𝑧

2𝜋𝐾4(𝑅𝑠
2(𝑧)−𝑅𝑚

2 )(𝑅𝑠
2(𝑧)+2𝐾1𝑅𝑠(𝑧)−𝑅𝑚

2 )

𝐿1+𝐿0

𝐿1
 

                      + ∫
𝑄𝑠 𝑑𝑧

2𝜋𝐾4(𝑅2−𝑅𝑚
2 )(𝑅2+2𝐾1𝑅−𝑅𝑚

2 )

𝐿

𝐿1+𝐿0
             

Putting the value of 𝑅𝑠
 (𝑧) from (1) in above equation, we get 

𝛥𝑃 =

𝑄𝑠

2𝜋𝐾4
{

(𝐿−𝐿0)

(𝑅2−𝑅𝑚
2 )(𝑅2+2𝐾1𝑅−𝑅𝑚

2 )
 +  

𝐿0

2𝑅𝑚
[
((𝑎−𝑅𝑚)2−𝑏2)

(− 
1
2
)

(𝑢+𝑅𝑚)(𝑣+𝑅𝑚)
 −  

((𝑎+𝑅𝑚)2−𝑏2)
(− 

1
2
)

(𝑢−𝑅𝑚)(𝑣−𝑅𝑚) 
] +                       

𝐿0

(𝑢−𝑣)
[ 

((𝑎+𝑣)2−𝑏2)
(− 

1
2
)

(𝑣2−𝑅𝑚
2 )

 −

  
((𝑎+𝑢)2−𝑏2)

(− 
1
2
)

(𝑢2−𝑅𝑚
2 )

]}     

where, 𝑢 = 𝐾1 + √𝐾1
2 + 𝑅𝑚

2   and  𝑣 = 𝐾1 − √𝐾1
2 + 𝑅𝑚

2 .                                                                                                
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The volumetric flow rate of serous i.e.; 𝑄𝑠 can be found as follows: 

𝑄𝑠 =

2𝜋𝐾4∆𝑃 { 
(𝐿−𝐿0)

(𝑅2−𝑅𝑚
2 )(𝑅2+2𝐾1𝑅−𝑅𝑚

2 )
 + 

𝐿0

2𝑅𝑚
[
((𝑎−𝑅𝑚)2−𝑏2)

(− 
1
2
)

(𝑢+𝑅𝑚)(𝑣+𝑅𝑚)
 −  

((𝑎+𝑅𝑚)2−𝑏2)
(− 

1
2
)

(𝑢−𝑅𝑚)(𝑣−𝑅𝑚) 
] +

                       
𝐿0

(𝑢−𝑣)
[ 

((𝑎+𝑣)2−𝑏2)
(− 

1
2
)

(𝑣2−𝑅𝑚
2 )

 −  
((𝑎+𝑢)2−𝑏2)

(− 
1
2
)

(𝑢2−𝑅𝑚
2 )

]  }

−1

                                                              (24)                                                                                                                                              

4. Results and Discussion 

 

   We have utilized the model analysis for the second generation of larger airways and examined the scenario 

when 𝑅 = 46.45 × 10−2cm. To explore the impact of parameters on mucus and serous flow rates, the values of 𝑄𝑚 

and 𝑄𝑠 in second generation of lungs airway as specified by equations (23) and (24) were determined using the 

following dataset [Weibal (1963), Shukla (1999)]: 

 

The variations in volumetric flow rates 𝑄𝑚 and 𝑄𝑠 with respect to time 𝑡 are shown in following figures: 

 

Figure 3: Variations of 𝑸𝒎 and 𝑸𝒔 with 𝒕 for different values of δ 

For fixed values of  T = 0.035 sec, 𝑅 = 46.45 × 10−2cm,  𝑅𝑚 = 38.45 × 10−2 cm,  𝑅𝑎 = 31.45 × 10−2cm,  L = 

1.0 cm, 𝐿0= 0.5 cm,  𝑃0 = 1 × 105 gm cm
-2

 sec
-2

 , 𝛽= 0.05 gm cm
2
sec, 𝜌𝑎 = 1.00 × 10−3𝑔𝑚 𝑐𝑚−3 , 𝜇𝑚 = 1 poise, 𝜇𝑠 

= 0.01 poise  and 𝜇𝑎= 0.0002 poise. Figures 3 shows the effect of time on the flow rates of mucus and serous for 

different values of δ. It is noted that as constriction thickness increases the flow rates of mucus and serous decrease. 

These findings are in line with the results Chitra et al. [6], Singh et al. [24] and others.  

𝑅 = 46.45 × 10−2 cm,  0= 0.40 cm, 

𝑅𝑚 = 38.45 × 10−2 cm, 𝑃0 = (1 − 10) × 105 gm cm
-2

 sec
-2

, 

𝑅𝑎 = 31.45 × 10−2 cm, 𝛽= 0 − 0.10 gm cm
2 
sec, 

𝑡= 0 − 0.035 sec, 𝜇𝑚 = 1.00 − 10.00 poise, 

T = 0.035 sec, 𝜇𝑎= 0.0002 poise, 

L = 1.0 cm, 𝜇𝑠 = 0.01 – 0.10 poise, 

𝐿0= 0.5 cm, δ = 0 − 0.1 cm. 
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Figure 4: Variations of 𝑸𝒎 and 𝑸𝒔 with 𝒕 for different values of µs 

      Figure 4 illustrate the impact of time on mucus and serous flow rates for fixed values of  𝑅 = 46.45 × 10−2cm,  

𝑅𝑚 = 38.45 × 10−2 cm,  𝑅𝑎 = 31.45 × 10−2cm, T = 0.035 sec,  L = 1.0 cm, 𝐿0= 0.5 cm,  𝑃0 = 1 × 105 gm cm
-2

 sec
-

2
 , 𝛽= 0.05 gm cm

2
sec, 𝜌𝑎 = 1.00 × 10−3𝑔𝑚 𝑐𝑚−3,  𝜇𝑎= 0.0002 poise and δ = 0.02 cm for various values of 𝜇𝑠. The 

observation reveals that serous and mucus flow rates decrease with increase in serous viscosity. These results match 

with the results of Kumar et al. [12] and many others. 

 

Figure 5: Variations of 𝑸𝒎 and 𝑸𝒔 with 𝒕 for different values of β  

Figure 5 depict the impact of time on mucus and serous flow rates for fixed values of 𝑅 = 46.45 × 10−2cm,  

𝑅𝑚 = 38.45 × 10−2 cm,  𝑅𝑎 = 31.45 × 10−2cm, T = 0.035 sec,  L = 1.0 cm, 𝐿0= 0.5 cm, 

𝜌𝑎 = 1.00 × 10−3𝑔𝑚 𝑐𝑚−3,  𝑃0 = 1 × 105 gm cm
-2

 sec
-2

 ,  𝜇𝑚 = 1 poise, 𝜇𝑎= 0.0002 poise, 𝜇𝑠 = 0.01 poise and δ =  

0.02 cm poise for different values of β. It is observed that mucus and serous flow rates increase as the slip parameter β 

increases. These results match with the results of Satpathi et.al [18, 19] and others. 
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Figure 6: Variations of 𝑸𝒎 and 𝑸𝒔 with 𝒕 for different values of P0 

   Figure 6 depict the impact of time on mucus and serous flow rates for fixed values of  𝑅 = 46.45 × 10−2cm,  

Rm = 38.45 × 10−2 cm,  R𝑎 = 31.45 × 10−2cm,  T = 0.035 sec,  L = 1.0 cm, 𝐿0= 0.5 cm, 𝛽= 0.05 gm cm
2
sec, 

𝜌𝑎 = 1.00 × 10−3𝑔𝑚 𝑐𝑚−3, 𝜇𝑚 = 1 poise, 𝜇𝑎= 0.0002 poise, 𝜇𝑠 = 0.01 poise and δ = 0.02 cm for different values of 

𝑃0.  It is observed that serous and mucus flow rates increase as the pressure drop in the two layers increases. These 

results match with the results of several investigators [1, 2, 3, 15, 20, 21]. 

 

Figure 7: Variations of 𝑸𝒎 with 𝒕 for different values of µm 

  Figure 7 illustrate the impact of time on mucus flow rate for fixed values of  𝑅 = 46.45 × 10−2cm,  𝑅𝑚 = 38.45 ×

10−2 cm, T = 0.035 sec,  L = 1.0 cm, 𝐿0= 0.5 cm,  𝑃0 = 1 × 105 gm cm
-2

 sec
-2

 , 𝛽= 0.05 gm cm
2
sec, 𝜌𝑎 = 1.00 ×

10−3𝑔𝑚 𝑐𝑚−3,  𝜇𝑎= 0.0002 poise, 𝜇𝑠= 0.01 poise  and δ = 0.02 cm for various values of μm and 𝑅𝑎 . The observation 

reveals that mucus flow rate decrease with increase in mucus viscosity. Also, noted that the mucus flow rate increases 

with increase in mucus thickness. These results match with the results Verma et al. [25, 26], Rana et al. [16] and many 

others. 

5. Conclusion  

 

The two-layer cylindrical quasi-steady co-axial flow model that is presented in this study takes into account the 

stresses in two layers as well as how coughing affects mucus production in constricted airways. It is assumed that the 
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mucus and serous flows under quasi-steady-state laminar conditions. With the boundary conditions, the model 

additionally incorporates the impact of the slip parameter. Graphical and analytical analysis given the following 

results: 

a) Mucus and serous flow rates decrease with increasing constriction thickness. 

b) Mucus and serous flow rates decrease as the serous viscosity increase. 

c) Mucus and serous flow rates increase when the slip parameter increases. 

d) Mucus and serous flow rates are increasing in coordination with an increase in pressure gradient, which is 

influenced by cough intensity. 

e) Mucus flow rate decreases with increasing mucus viscosity and increases with greater mucus thickness. 
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