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Abstract 

In this paper, the exponentiated length-biased exponential distribution is considered for Bayesian analysis. 

The expressions for Bayes estimators of the parameter have been derived under squared error, precaution-

ary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors. 
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1. Introduction 

Maxwell et al. [1] proposed a new generalization of the length-biased exponential distribution called the 

exponentiated length-biased exponential (E-LBE) distribution for modeling lifetime data due to some in-

teresting properties such as “lack of memory”. The probability density function of E-LBE distribution is 

given by 
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The joint density function or likelihood function of (1) is given by 

    
1

2
1

1i i

n n b
x a x an

i i

i

b
f x; x e x a e

a
 


 



  
      

   


 

     
1

1

1 1 1 i

n b
x a

i

i

exp log x a e






          
   (2) 

 

The log-likelihood function is given by 
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**  ** 

Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ, 

which is given as 
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2. Bayesian Method of Estimation 

The Bayesian inference procedures have been developed generally under squared error loss function 
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The Bayes estimator under the above loss function, say, s


 is the posterior mean, i.e., 
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Zellner [2], Basu and Ebrahimi [3] have recognized the inappropriateness of using the symmetric loss 

function. Norstrom [4] introduced precautionary loss function is given as 
2

L ,

 

 









 
 

    
 

. (7) 

The Bayes estimator under this loss function is denoted by P


 and is obtained as  
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Calabria and Pulcini [5] point out that a useful asymmetric loss function is the entropy loss 
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where  ,






  and whose minimum occurs at . 



 
Also, the loss function  L   has been used in 

Dey et al. [6] and Dey and Liu [7], in the original form having 1p .  Thus  L   can written be as 

    1eL b log ;  b>0.         (9) 

The Bayes estimator under the entropy loss function is denoted by E


 and is obtained by solving the fol-

lowing equation 
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Wasan [8] proposed the K-loss function, which is given as 
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**  ** 

Under the K-loss function, the Bayes estimator of θ is denoted by K


 and is obtained as 
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 (12) 

 

Al-Bayyati [9] introduced a new loss function, which is given as 
2

cL ,    
    

    
   

 (13) 

Under Al-Bayyati’s loss function, the Bayes estimator of θ is denoted by Al


 and is obtained as 
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Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may 

use the quasi-density as given by 

 1

1
0 0

d
g  ; , d , 


    (15) 

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior. 

 

(ii) Gamma prior: Generally, the gamma density is used as the prior distribution of the parameter θ giv-

en by 
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3. Posterior density under  1g   

The posterior density of θ under  1g  , on using (2), is given by 
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**  ** 
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Theorem 1: On using (17), we have 
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Proof: By definition, 
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From equation (18), for 1c  , we have 
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From equation (18), for 2c  , we have 
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From equation (18), for 1c   , we have 
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From equation (18), for 1c c  , we have 
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**  ** 

4. Bayes estimators under  1g   

From equation (6), on using (19), the Bayes estimator of θ under the squared error loss function is given by 
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From equation (8), on using (20), the Bayes estimator of θ under the precautionary loss function is ob-

tained as 
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From equation (10), on using (21), the Bayes estimator of θ under the entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under the K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function 

comes out to be 
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5. Posterior density under  2g   

Under  2g  , the posterior density of θ, using equation (2), is obtained as 
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**  ** 
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Theorem 2: On using (28), we have 
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Proof: By definition, 
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From equation (29), for 1c  , we have 
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From equation (29), for 2c  , we have 
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From equation (29), for 1c   , we have 
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**  ** 

From equation (29), for 1c c  , we have 
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6. Bayes estimators under  2g   

From equation (6), on using (30), the Bayes estimator of θ under the squared error loss function is given 

by 

     
1

1

1

1 1 i

n b
x a

S i

i

n log x a e  








          
 . (34) 

 

From equation (8), on using (31), the Bayes estimator of θ under the precautionary loss function is ob-

tained as 
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From equation (10), on using (32), the Bayes estimator of θ under the entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under the K-loss function is given by 

      
1
2

1
1

1

1 1 1 i

n b
x a

K i

i

n n log x a e   








                
 . (37) 

 

From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function 

comes out to be 
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7. Conclusion 

In this paper, we have obtained a number of estimators of the parameter of exponentiated sslength-biased 

exponential distribution. In equation (4) we have obtained the maximum likelihood estimator of the pa-

rameter. In equations (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different 

loss functions using quasi-prior. In equations (34), (35), (36), (37) and (38) we have obtained the Bayes 

estimators under different loss functions using gamma prior. In the above equations, it is clear that the 

Bayes estimators depend upon the parameters of the prior distribution.  
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