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Abstract

In this paper, the exponentiated length-biased exponential distribution is considered for Bayesian analysis.
The expressions for Bayes estimators of the parameter have been derived under squared error, precaution-
ary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors.
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1. Introduction

Maxwell et al. [1] proposed a new generalization of the length-biased exponential distribution called the
exponentiated length-biased exponential (E-LBE) distribution for modeling lifetime data due to some in-

teresting properties such as “lack of memory”. The probability density function of E-LBE distribution is
given by

_ 0-1
f(x;ts?):%é?xe‘x/a [(1+(x/a))e‘x/a]b 1[1—{(1+(x/a))e‘x/f"}b} ;x>0. o)
The joint density function or likelihood function of (1) is given by

{s0)=( ] 0 [H xe e [(1+(x /a))e-xi/a}“}
xexp{ (0- lzlog[ {(1+ x/a))e x/a}br} o

The log-likelihood function is given by
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Differentiating (3) with respect to 6 and equating to zero, we get the maximum likelihood estimator of 9,
which is given as

Zlog[ ~{(1+(x/a))e X'/a}br. 4)

2. Bayesian Method of Estimation
The Bayesian inference procedures have been developed generally under squared error loss function

%é,ej:(é- 9]2. ©

The Bayes estimator under the above loss function, say, s is the posterior mean, i.e.,

0s =E(0). (6)

Zellner [2], Basu and Ebrahimi [3] have recognized the inappropriateness of using the symmetric loss
function. Norstrom [4] introduced precautionary loss function is given as

N 2

) (e-ej

L(@,@)zf. ™
0

The Bayes estimator under this loss function is denoted by € and is obtained as
~ %
0= E(¢")]". ®)

Calabria and Pulcini [5] point out that a useful asymmetric loss function is the entropy loss

L(A)ec [Ap —p log, (A)—l]

A

0 . A ) .
where A =5,and whose minimum occurs at & = &. Also, the loss function L(A) has been used in

Dey et al. [6] and Dey and Liu [7], in the original form having p=1. Thus L(A) can written be as
)=b[A-log, (A)-1]; b>0. 9)

The Bayes estimator under the entropy loss function is denoted by @& and is obtained by solving the fol-
lowing equation

e

Wasan [8] proposed the K-loss function, which is given as

2
) (e_ej
L(H,Hj S (11)
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Under the K-loss function, the Bayes estimator of 0 is denoted by @« and is obtained as

o - { EE<§73>T )

Al-Bayyati [9] introduced a new loss function, which is given as

2
L(e,e) = 6° (9— 9) (13)

Under Al-Bayyati’s loss function, the Bayes estimator of 0 is denoted by @ai and is obtained as
N E 9C+1
by =)
E(9")
Let us consider two prior distributions of 0 to obtain the Bayes estimators.

(i) Quasi-prior: For the situation where we have no prior information about the parameter 6, we may
use the quasi-density as given by

(14)

gl(e):eid ;6>0,d >0, (15)

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.

(i) Gamma prior: Generally, the gamma density is used as the prior distribution of the parameter 6 giv-
en by

o)=L grg ; 0>0. 16
3. Posterior density under g, (6’)
The posterior density of 6 under g, (&), on using (2), is given by

_(;)n o" (ﬁ x, e79/2 [(“(Xi/a))e—xi/a]b—lj

xexpy—(6 - 1Z|0 1-{(1+(x/a))e™"® T'lg
P e a8

(5] ([T eoxapeT]
xexp{ 0- 1ZIog[ ~{(1+(x/a))e *-/a}br}ed

o exp{—eglog [1—{(1+(xi/a))exi/a}b}l}
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(Zlog[ —{(1+(x/a))e X/a}b}_ljn_dﬂ
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Theorem 1: On using (17), we have

()" Bl e ]|

i=1

Proof: By definition,

E(6°)=[6°f (6/x)do
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(ng[ {(1+ X /a))e x/a}ij 7 Te(nd*) 762'09{ (e /a))e }Tde
(n d+l) 0

(Zlog[ {2+ (% /a)e _x/a}b}l]"‘d” F(n—d+c+1)
I'(n—d+1)
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i=1

From equation (18), for ¢ =1, we have

E(0)=(n—d +1)[izl:|og [1—{(1+(xi /a))exi/a}brj

-1

From equation (18), for ¢ =2, we have

E(6*)=[(n-d+2)(n- d+1]{2|og[ ~{(1+(x/a))e x/aﬂl}

-2

From equation (18), for ¢ =—1, we have
-x/a b
E(ej [ {(1+ x./a))e } }

From equation (18), for c=c+1, we have

r(n-d+c+2) (Zlog[ {(1+ x/a))e _X/a}b}‘lj—(cu)

I(n-d+1) \43

£(0r")-

[Zlog[ ~{(1+(x/a))e x/a}b}—ljndwﬂ
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(18)

(19)

(20)

(21)

(22)



36 Rao and Pandey

4. Bayes estimators under g, (9)
From equation (6), on using (19), the Bayes estimator of 6 under the squared error loss function is given by

0s =(n—d +1)[i2:: log [1— {(1+(x /a))e—xi/a}b}‘lj_l (23)

From equation (8), on using (20), the Bayes estimator of 6 under the precautionary loss function is ob-

tained as
-1

A b -1
Or =[(n-d+2)(n—d+1)]2 (Zlog[ {(1+ x,/a))e x/a} } J (24)
From equation (10), on using (21), the Bayes estimator of 6 under the entropy loss function is given by
-1
b1t
(n—d [ZIog[ {(l+ x,/a))e X/a} } ] (25)
From equation (12), on using (19) and (21), the Bayes estimator of 6 under the K-loss function is given by

O« =[(n-d+1)(n-d) [ (Zlog[ {(1+ x,/a))e X/a}brj_l (26)

From equation (14), on using (18) and (22), the Bayes estimator of 6 under Al-Bayyati’s loss function
comes out to be

On = (n—d+c +1)(Zn: log {1— {(1+ (% /a))e*Xi/a}b T]_l (27)

i=1

5. Posterior density under g, (9)

Under g, (&), the posterior density of 0, using equation (2), is obtained as
2

_(abz j ‘ (H e [(1+<xi/a))e‘*i/a]b‘1]

coxpl—(0-1) 3 log 1= {(1+(x /a))e 21 | L BT _grrgm
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() (Hxi [<1+<xi/a>>ex-ﬂ“]

xexp{ (0- 1ZIog[ {(1+ x,/a))e x/a}b]l}rf;)aa_le_ﬁg

o exp{—(mglog [1—{(1+(Xi/a))ex‘/ a}bTH
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r'(n +0!)/£,8+Zlog [1—{(1+(xi/a))e‘xi/a}b} ]
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Theorem 2: On using (28), we have
E(0°)= %(ﬁ#glog [1—{(1+(xi/a))e‘xi/a}brj (29)
Proof: By definition,
0°)=[0°t (6/x)do
[ﬁ-'-glog [l_{(l_'_(Xi/a))e_Xi/a}b} j T n+a+c-1 [ﬁ+§|og{ {1+ x/a)) Xl/a}bjrjg
- I(n+a) -[0 a6
(,B-iriz::log [1—{(1+(Xi/a))exi/a}by] F(n+a+c)
F(n +0() (ﬂ+i|og |:1_{(1+(Xi/a))e_xi/a}b}—lj”ﬂzﬂ;
LSl xjme ] )
From equation (29), for ¢ =1, we have
E(0)=(n+ a)(ﬁ+2lllog [1—{(1+(xi /a))e‘xi/a}b}‘lj (30)
From equation (29), for ¢ =2, we have
E (92) =[(n+a+1)(n+a)] (ﬁ+ iZl:log [1— {(1+ (%, /a))e‘xi/a}b]lj (31)

From equation (29), for ¢ =-1, we have

E(%j_(mLa 1)(,B+Zlog[ {(1+(xi/a))ex‘/a}brj (32)
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From equation (29), for c=c+1, we have

E(90+1)=F(n+a+c+1 [,3 Zlog[ {(1+ X/a)) X/a}b:|1)_(c+1). .

F(n+a

6. Bayes estimators under g, (6)

From equation (6), on using (30), the Bayes estimator of 6 under the squared error loss function is given
by

A n b -1 -1
Os :(n+a)(ﬂ+2log [1—{(1+(xi/a))e—xi/a} } j , (34)
i-1
From equation (8), on using (31), the Bayes estimator of 6 under the precautionary loss function is ob-
tained as

O = [(n+a +1)(n+a)]% (ﬂ+§log [1—{(1+(xi/a))eX‘/a}b}ljl. (35)

From equation (10), on using (32), the Bayes estimator of 6 under the entropy loss function is given by

Oc = (n+a +1)(,B+i2:‘|og |:1—{(1+(Xi/a))eXi/a}bji_lj_l_ (36)

From equation (12), on using (30) and (32), the Bayes estimator of 6 under the K-loss function is given by

Ox = [(n+a)(n+a —1)]% (ﬂ+i2lllog [1—{(1+(xi /a))e‘xi/a}b]_l]_l. (37)

From equation (14), on using (29) and (33), the Bayes estimator of 6 under Al-Bayyati’s loss function
comes out to be

On = (n+a+ C)(ﬂ+ anlog [1—{(1+(xi/a))e‘xi/a}b}1jl, (38)

i=1

7. Conclusion

In this paper, we have obtained a number of estimators of the parameter of exponentiated sslength-biased
exponential distribution. In equation (4) we have obtained the maximum likelihood estimator of the pa-
rameter. In equations (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different
loss functions using quasi-prior. In equations (34), (35), (36), (37) and (38) we have obtained the Bayes
estimators under different loss functions using gamma prior. In the above equations, it is clear that the
Bayes estimators depend upon the parameters of the prior distribution.
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