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Abstract

In this paper, a new distribution called half Cauchy Gompertz distribution is

introduced. We have derived some important mathematical properties of the new

distribution like hazard function, probability density function, survival function,

cumulative distribution function, cumulative hazard function, survival function,

quantiles, the measures of skewness based on quartiles and coefficient of kurtosis

based on octiles. To estimate the parameters of the new distribution we have

applied the three commonly used estimation method namely Cramer-Von-Mises

(CVM), maximum likelihood estimators (MLE), and least-square (LSE) methods.

For the assessment of potentiality of the new distribution we have consider a real

dataset and compared the goodness-of-fit attained by proposed distribution with

some competing distribution. It has been observed that the proposed model fits

the data well and more flexible as compared to some other models.

Keywords : Half-Cauchy, Gompertz distribution, Estimation, MLE, LSE and

CVME.
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1. Introduction

The Gompertz model is one of the extensively used probability model having

survival function based on laws of mortality. This model can be used in model-

ing life time data related to human mortality and investigating actuarial tables.

Gompertz [7] has defined the Gompertz distribution and it has been employed

as a growth model and also used to fit the tumor growth. The function of Gom-

pertz model can be used to reduce a significant gathering of data in life tables

into a single function. Initially, this feature was designed to explain human mor-

tality, based on the assumption that as an individual age, exponential decrease

in mortality rate is seen.
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The cumulative distribution function (CDF) and probability density function

(PDF) of Gompertz distribution are

G(x) = 1− exp

{
λ

α
(1− eαx)

}
; x > 0, α > 0, λ > 0, (1.1)

and

g (x) = λeαx exp

{
λ

α
(1− eαx)

}
; x > 0, α > 0, λ > 0, (1.2)

respectively. The extensive survey and applications of the Gompertz distribution

can be found in Ahuja and Nash [2]. Cooray and Ananda [4] have presented a

family of the Gompertz-sinh and used to analyze the reliability data with highly

negatively skewed distribution. El-Gohary et al. [6] have introduced a flexible

model called the generalized Gompertz distribution with decreasing or increasing

or constant or bathtub curve failure rate depending upon the shape parameter.

Different method of estimation for the exponentiated Gompertz distribution has

been studied by Abu-Zinadah and Al-Oufi [1]. The inverse generalized Gompertz

has been introduced in Chaudhary and Kumar [3].

Therefore, we are interested to extend the Gompertz distribution using half-

Cauchy family of distribution. Let X be a positive random variable that follows

the half-Cauchy distribution and its CDF can be written as

κ (t) =
2

π
tan−1

(
t

θ

)
, t > 0, θ > 0. (1.3)

and the probability density function (PDF) corresponding to (1) is,

r (t) =
2

π

(
θ

θ2 + x2

)
, t > 0, θ > 0. (1.4)

The extending family of distribution has developed by Zografas and Balakr-

ishnan [19] and CDF of family of distribution is

F (x) =

− ln[1−G(x)]∫
0

r (t) dt, (1.5)

here G(x) is the CDF of any baseline distribution and r(t) is the PDF of any

distribution. The family of half-Cauchy distribution whose CDF can be obtained

by using r(t) as PDF of half-Cauchy distribution defined in (1.4) and expressed
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as

F (x) =

− ln[1−G(x)]∫
0

2

π

θ

θ2 + t2
dt

=
2

π
arctan

(
−1

θ
ln [1−G (x)]

)
; x > 0, θ > 0.

(1.6)

The PDF corresponding to (1.6) can be expressed as

f(x) =
2

πθ

g(x)

1−G(x)

[
1 +

{
−1

θ
log [1−G(x)]

}2
]−1

;x > 0, θ > 0. (1.7)

The inspiration of this study is to put forward a more flexible distribution by

inserting just one extra parameter to the Gompertz distribution to achieve a

better fit to the real data. We study the properties of the half Cauchy Gompertz

distribution and explore its potentiality and applicability.

The contents of this paper are managed as follows. The new half Cauchy

Gompertz distribution is introduced and several distributional properties are dis-

cussed in Section 2. Three mostly used estimation approaches are used to esti-

mate the parameters namely least-square (LSE), maximum likelihood estimators

(MLE), and Cramer-Von-Mises (CVM) methods are presented in Section 3. In

Section 4 a real life dataset have been considered to investigate the applications

and suitability of the proposed distribution. In this section, we calculate the ap-

proximate confidence intervals of the ML estimators of the parameters and also

AIC, CAIC, BIC, HQIC are calculated to evaluate the goodness-of-fit of the half

Cauchy Gompertz distribution. Finally, some concluding remarks are presented

in Section 5.

2. Half-Cauchy Gompertz Distribution

In this section the new distribution named half Cauchy Gompertz distribu-

tion is defined. Substituting (1.1) and (1.2) in (1.6) and (1.7) we get the CDF and

PDF of HCGZ distribution. Let X be a non negative random variable follows

the HCGZ(α, λ, θ) if its CDF can be written as,

F (x) =
2

π
arctan

{
− λ

αθ
(1− eαx)

}
; x > 0, (α, λ, θ) > 0, (2.1)

and its PDF may be expressed as,

f (x) =
2

π

λeαx

θ

[
1 +

{
− λ

αθ
(1− eαx)

}2
]−1

; x > 0. (2.2)
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Survival function:

R (x) = 1− 2

π
arctan

{
− λ

αθ
(1− eαx)

}
(2.3)

Hazard function:

h(x) =
2

π

λeαx

θ

[
1− 2

π
arctan

{
− λ

αθ
(1− eαx)

}]−1
[
1 +

{
− λ

αθ
(1− eαx)

}2
]−1

.

(2.4)

Quantile function:

Q(p) =
1

α
ln

{
1 +

αθ

λ
tan

(πp
2

)}
; 0 < p < 1. (2.5)

The Random Deviate Generation:

x =
1

α
ln

{
1 +

αθ

λ
tan

(πu
2

)}
; 0 < u < 1. (2.6)

where u ∼ U(0, 1).

PDF and HRF of HCGZ(α, λ, θ) with numerous values of parameters α and

θ for λ = 1 are plotted which are displayed in Figure 1.
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Figure 1. Plots of the probability density function(left panel) and

hazard function (right panel), for λ=1 and different values of α and θ.
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Skewness and Kurtosis:

The skewness and kurtosis measures are used in statistical analyses to char-

acterize a distribution or a data set. The Bowley’s skewness measure based on

quartiles is given by

Sk =
Q (3/4)− 2Q (1/2) +Q (1/4)

Q (3/4)−Q (1/4)
,

and the Moors’s kurtosis measure based on octiles, Moors [11], is given by

Ku =
Q (7/8)−Q (5/8) +Q (3/8)−Q (1/8)

Q (6/8)−Q (2/8)
,

where the Q (.) is the quantile function.The skewness and kurtosis measures based

on quantiles like Bowley’s skewness and Moors’s kurtosis have a number of ad-

vantages compared to the classical measures of skewness and kurtosis, e.g. they

are less sensitive to outliers and they exist for the distributions even without

defined the moments.

3. Methods of Estimation

The object of estimation is to evaluate a model parameter value based on

sample information. The estimation theory deals with the basic problem of infer-

ring some relevant features of a chance experiment centered on the observation of

the experiment outcomes. There are so many methods which are used to evaluate

values of parameters. Three kinds of parameter estimation methods have been

considered, such as MLE, LSE, and the Cramer-von Mises (CVM) methods.

(a) Maximum Likelihood Estimation

Let us consider the x = (x1, ..., xn) of size n be the experiential values from

HCGZ(α, λ, θ) then the likelihood function for the parameter vector is expressed

as,

L (α, λ, θ|x) =
(
2

π

)n

(λθ)n exp

(
α

n∑
i=1

xi

)
n∏

i=1

[
θ2 +

{
−λ

α
(1− eαxi)

}2
]−1

.

Taking logarithms on both sides, we get
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ℓ(α, λ, θ|x) = n ln

(
2

π

)
+ n lnλ+ n ln θ + α

n∑
i=1

xi

−
n∑

i=1

ln

[
θ2 +

{
−λ

α
(1− eαxi)

}2
]
.

(3.1)

The elements of the score function are obtained as

∂ℓ

∂α
=

n∑
i=1

xi +
2λ2

α3

n∑
i=1

(1− eαxi)
(
1− eαx + α2eαxi

)
[
1 +

{
− λ

αθ
(1− eαxi)

}2
]−1

∂ℓ

∂λ
=

n

λ
+

2λ

α

n∑
i=1

eαxi (1− eαxi)

[
1 +

{
− λ

αθ
(1− eαxi)

}2
]−1

∂ℓ

∂θ
=

n

θ
− 2θ

n∑
i=1

[
1 +

{
− λ

αθ
(1− eαxi)

}2
]−1

(3.2)

Equating ∂ℓ
∂α ,

∂ℓ
∂λ and ∂ℓ

∂θ to zero.

Equating Bα, Bλ and Bθ to zero and solve these non-linear equations simultane-

ously which gives the MLE Θ̂ =
(
α̂, λ̂, θ̂

)
of Θ = (α, λ, θ)T . Manually we cannot

solve these equations so by using the computer software R, Mathematica, Matlab,

or any other programs and Newton-Raphson’s iteration method, one can solve

these equations. Let Θ = (α, λ, θ)T be the parameter vector and associated MLE

of Θ as Θ̂ =
(
α̂, λ̂, θ̂

)
, and then using the result of asymptotic normality we have,(

Θ̂−Θ
)
→ N3

[
0, (I (Θ))−1

]
, where I (Θ) is the information matrix of Fisher.

(b) Least-Square Estimation (LSE) Method

The least-square estimators of the unknown parameters α, λ and θ of HCGZ

distribution can be obtained by minimizing

S (X;α, λ, θ) =
n∑

i=1

[
F (X(i))−

i

n+ 1

]2
, (3.4)

with respect to (w.r.t.) α, λ and θ, Swain et al.[18].

From a distribution function F (.), consider random sample be denoted by

{X1, . . . , Xn} with sample size is n where F (Xi) represents the distribution func-

tion of the random variables ordered X(1) < X(2) < . . . < X(n). Then LSE
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(α̃, λ̃ and θ̃) is acquired with minimization of

S (X;α, λ, θ) =

n∑
i=1

[
2

π
arctan

{
− λ

αθ
(1− eαx(i))

}
− i

n+ 1

]2
, (3.5)

with respect to α, λ and θ. Differentiation of (3.5) with respect to α, λ and θ

yields,

∂S

∂α
=

4

π

λ

α2θ

n∑
i=1

[
2

π
arctan

{
− λ

αθ
A(x(i))

}
− i

n+ 1

]
{
1 + eαx(i)

(
αx(i) − 1

)}
T (x(i)),

∂S

∂λ
= − 4

παθ

n∑
i=1

A(x(i))

[
2

π
arctan

{
− λ

αθ
A(x(i))

}
− i

n+ 1

]
T (x(i)),

∂S

∂θ
=

4

παθ2

n∑
i=1

A(x(i))

[
2

π
arctan

{
− λ

αθ
A(x(i))

}
− i

n+ 1

]
T (x(i)).

where

T (x(i)) =

[
1 +

{
− λ

αθ
A(x(i))

}2
]−1

and A(x(i)) = 1− eαx(i) .

Likewise, the weighted LSEs can be found with minimization w.r.t. α, λ and θ.

D (X;α, λ, θ) =

n∑
i=1

wi

[
F (X(i))−

i

n+ 1

]2
.

The weights wi are

wi =
1

V ar(X(i))
=

(n+ 1)2 (n+ 2)

i (n− i+ 1)
.

Hence, the weighted LSEs of α, λ and θ can be found respectively by mini-

mizing following function w.r.t. α, λ and θ.

D (X;α, λ, θ) =

n∑
i=1

(n+ 1)2 (n+ 2)

i (n− i+ 1)

[
2

π
arctan

{
− λ

αθ
(1− eαx(i))

}
− i

n+ 1

]2
.

(c) Cramer-Von-Mises estimation (CVME)

The CVM estimators for α, λ and θ are obtained by minimization of



58 Lal Babu Sah Telee and Vijay Kumar

C (X;α, λ, θ) =
1

12n
+

n∑
i=1

[
F
(
x(i)|α, λ, θ

)
− 2i− 1

2n

]2
=

1

12n
+

n∑
i=1

[
2

π
arctan

{
− λ

αθ
(1− eαx(i))

}
− 2i− 1

2n

]2
.

(3.6)

Differentiating (3.6) with respect to α, λ and θ we get,

∂C

∂α
=

4

π

λ

α2θ

n∑
i=1

[
2

π
arctan

{
− λ

αθ
A(x(i))

}
− 2i− 1

2n

]
{
1 + eαx(i)

(
αx(i) − 1

)}
T (x(i))

∂C

∂λ
= − 4

παθ

n∑
i=1

A(x(i))

[
2

π
arctan

{
− λ

αθ
A(x(i))

}
− 2i− 1

2n

]
T (x(i))

∂C

∂θ
=

4

παθ2

n∑
i=1

A(x(i))

[
2

π
arctan

{
− λ

αθ
A(x(i))

}
− 2i− 1

2n

]
T (x(i))

The CVM estimators can be found by solving

∂C

∂α
= 0,

∂C

∂λ
= 0 and

∂C

∂θ
= 0. (3.7)

simultaneously.

4. Real data Application

We establish the applicability of HCGZ model in this section by using a real

dataset used by earlier investigators. The data is on the breaking stress of 66

carbon fibres of 50 mm length (GPa). The data has been previously used by

Nichols and Padgett [13].
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Figure 2. QQ plot(left panel) and the PP plot (right panel).

The HCGZ distribution MLEs are calculated by maximizing the likelihood

function (3.1) by using optim() command in R platform (R Core Team [14]) and

Rizzo [17]. We have obtained the value of log-likelihood is ℓ(Θ̂) = −85.2050.

The MLEs of α, λ and θ are given in table 1. The Q-Q plot and P-P plot have

been plotted in Figure 2, and it is seen that the HCGZ probability model is well

adapted to the data given, Kumar and Ligges [8]. Profile log-likelihood function

graphs of α, λ and θ are shown in Figure 3 and it is perceived the MLEs are

uniquely determined.
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Figure 3. Profile log-likelihood functions of α, λ and θ.

The models are compared via the Akaike Information Criterion (AIC), the

Corrected Akaike Information criterion (CAIC), Bayesian information criterion

(BIC) and Hanann-Quinn information criterion(HQIC) which are used to select

the best model among several models, (D’Agostino and Stephens [5]). The defi-

nitions of AIC, BIC, CAIC and HQIC are given below:

AIC = −2 ℓ(Θ̂) + 2 k

BIC = −2 ℓ(Θ̂) + k log (n)

CAIC = AIC +
2k (k + 1)

n− k − 1

HQIC = −2 ℓ(Θ̂) + 2 k log(log(n))

where k is the number of parameters in the model under consideration. Table 1

presents the estimated value of the HCGZ distribution parameters using the MLE,

LSE and CVME methods and their negative log-likelihood and AIC criteria.

Table 1

Estimated parameters, log-likelihood, AIC and BIC

Method α̂ λ̂ θ̂ –ℓ(Θ̂) AIC BIC

MLE 1.6660 0.0328 2.0578 85.2050 176.4100 182.9790

LSE 1.6086 0.0329 1.8127 85.2473 176.4947 183.0636

CVME 1.6536 0.0306 1.8671 85.2070 176.4139 182.9829
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Moreover, perfection of competing models is also tested via the Kolmogrov-

Simnorov(K-S), the Anderson-Darling (A2) and the Cramer-Von Mises (W) sta-

tistics. The mathematical expressions for the statistics above are given below

KS = max
16i6n

(
ξi −

i− 1

n
,
i

n
− ξi

)
,

A2 = −n− 1

n

n∑
i=1

(2i− 1) {ln ξi + ln (1− ξn+1−i)} ,

W =
1

12n
+

n∑
i=1

{
(2i− 1)

2n
− ξi

}2

,

where ξi = CDF
(
x(i)
)
; the x(i)’s being the ordered observations, (D’Agostino

and Stephens [5]). In Table 3 we have presented The KS, W and A2 statistics

with their corresponding p-value of MLE, LSE and CVE estimates.
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Figure 4. The Histogram and the PDF of fitted distributions for MLE, LSE

and CVME methods (left panel) and KS plot of HCGZ distribution (right

panel).

Table 2

The KS, A2 and W statistics with p-value

Method KS(p-value) W(p-value) A2(p-value)

MLE 0.0677(0.9227) 0.0468(0.8967) 0.3321(0.9120)

LSE 0.0652(0.9418) 0.0477(0.8914) 0.3256(0.9175)

CVME 0.0662(0.9344) 0.0468(0.8972) 0.3287(0.9149)

The values of Kolmogorov-Smirnov(KS), Anderson-Darling(A2) and Cramer-

Von Mises (W ) statistic with their respective p-value of different models are re-

ported in Table 3. As we can see in Table 3, the proposed model has the minimum
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values of the test statistics and higher p-value. Figure 4 (left panel) displays the

histogram and the fitted density functions, which support the results in Tables 2

and 3. Also, Figure 4 (right panel) which compares the distribution functions for

the different models with the empirical distribution function reveals the same.

Therefore, for the given data set shows the proposed distribution gets better fit

and more reliable solutions from other alternatives.

Some of the well-known existing distributions are chosen for comparison

purposes, which are listed below, to show the goodness-of-fit of the HCGZ model.

(i) Generalized Gompertz distribution:

The probability density function of generalized Gompertz(GGZ) distri-

bution (El-Gohary et al.[6]) with parameters α > 0, λ > 0 and θ > 0

is

fGGZ (x) = θλeαxe−
λ
α
(eαx−1)

[
1− exp

(
−λ

α
(eαx − 1)

)]θ−1

;x > 0.

(ii) Gompertz distribution:

The probability density function of Gompertz distribution(GZ)with pa-

rameters α and θ > 0 is given by, (Marshall & Olkin [10])

fGZ (x) = θ eαx exp

{
θ

α
(1− eαx)

}
; x > 0, θ > 0, −∞ < α < ∞.

(iii) Exponentiated Exponential Poisson (EEP) distribution:

The probability density function of EEP (Ristić & Nadarajah [16]) with

parameters α > 0, β > 0 and λ > 0 can be expressed as

fEEP (x) =
αβλ

(1− e−λ)
e−βx

(
1− e−βx

)α−1
exp

{
−λ
(
1− e−βx

)α}
; x > 0.

(iv) Generalized Exponential Extension (GEE) distribution:

The probability density function of GEE introduced by (Lemonte [9])

having upside down bathtub-shaped hazard function distribution with

parameters α, β and λ is

fGEE (x) = αβλ (1 + λx)α−1 exp {1− (1 + λx)α}

[1− exp {1− (1 + λx)α}]β−1;x > 0.

(v) Power Cauchy distribution:

The PDF of power Cauchy (PC) distribution has been introduced by

(Rooks et al. [15]) is

fPC(x;α, λ) =
2α

πx

(x
λ

)α{
1 +

(x
λ

)2α}−1

; x > 0, α > 0, λ > 0.
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(vi) Exponentiated Weibull distribution:

The PDF of exponentiated Weibull (EW) distribution is introduced by

(Mudholkar & Srivastava [12])

fEW (x) = αβλxβ−1 exp
(
−αxβ

){
1− exp

(
−αxβ

)}λ−1
;x > 0.

The CAIC, AIC, HQIC, and BIC that are shown in Table 4 have been determined

to judge the potentiality of the HCGZ distribution.

Table 3

log-likelihood, AIC, BIC, CAIC and HQIC

Distribution -ℓ(Θ̂) AIC BIC CAIC HQIC

HCGZ 85.2050 176.4100 182.9790 176.7971 179.0057

GGZ 85.6858 177.3716 183.9406 177.7587 179.9673

EW 85.9447 177.8894 184.4584 178.2765 180.4851

EEP 86.6899 179.3798 185.9488 179.7669 181.9755

GEE 87.2704 180.5408 187.1098 180.9279 183.1365

GZ 88.0884 180.1767 184.5560 180.3672 181.9072

PC 90.5126 185.0252 189.4045 185.2157 186.7557

The fitted distribution’s PDF and histogram and the empirical distribution func-

tion of some selected distributions with the estimated distribution function of the

HCGZ distribution are illustrated in Figure 5.
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Figure 5. The Histogram and the PDF of fitted distributions (left panel);

Empirical CDF with estimated CDF(right panel).
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Table 4

Goodness of fit statistic

Distribution KS(p-value) W(p-value) A2(p-value)

HCGZ 0.0677(0.9227) 0.0468(0.8967) 0.3321(0.9120)

GGZ 0.0833(0.7498) 0.0715(0.7443) 0.4457(0.8020)

EW 0.0809(0.7805) 0.0813(0.6861) 0.4846(0.7620)

EEP 0.0895(0.6662) 0.1014(0.5796) 0.5657(0.6804)

GEE 0.1096(0.4065) 0.1530(0.3812) 0.7816(0.4940)

GZ 0.1120(0.3794) 0.1397(0.4233) 0.9485(0.3851)

PC 0.0963(0.5731) 0.1246(0.4782) 1.0733(0.3207)

The values of the statistics for Anderson-Darling (W ), Cramer-Von Mises (A2)

and Kolmogorov-Simnorov (KS) are given in Table 5 in order to evaluate the

HCGZ distribution’s goodness-of-fit with other rival distributions. The test sta-

tistical value of the HCGZ distribution is found to be both minimum and greater

p-value, so we achieve that the HCGZ distribution obtains results that are rela-

tively well-fit and steadier and more precise than those taken for comparison.

5. Conclusion

In this study, we have presented a new distribution called half Cauchy Gom-

pertz distribution. A comprehensive study of some statistical and mathematical

properties of the proposed distribution including the derivation of explicit ex-

pressions for its reliability function, survival function, hazard function, the quan-

tile function and skewness and kurtosis. Three well-known estimation methods

namely maximum likelihood estimation (MLE), least-square estimation (LSE),

and Cramer-Von-Mises estimation (CVME) methods are used for the parame-

ter estimation and we found that the MLEs are relatively good than LSE and

CVM methods. The curves of the PDF of the proposed distribution have shown

that its shape is increasing-decreasing and right skewed and flexible for modeling

real-life data. Also, the graph of the hazard function is monotonically increasing

or constant or reverse j-shaped according to the value of the model parameters.

The applicability and suitability of the proposed distribution has been evalu-

ated by considering a real-life dataset and the results exposed that the proposed

distribution is much flexible as compared to some other fitted distributions.
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